scholarly journals Investigation of Mechanism of Tool Electrode Wear in Tube Electrode High-Speed Electrochemical Discharge Drilling

2019 ◽  
pp. 11663-11678
Author(s):  
Yan Zhang ◽  
Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 634 ◽  
Author(s):  
Yan Zhang ◽  
Chen Wang ◽  
Yu Wang ◽  
Lei Ji ◽  
Jian Tang ◽  
...  

In tube electrode high-speed electrochemical discharge machining (TSECDM), mixed products are constantly produced in the narrow machining gap by simultaneous discharge erosion and electrochemical dissolution. For the high-efficiency removal of these products from the machining gap, a tool electrode with an optimized helical structure was utilized in TSECDM in this study. Firstly, the concentration distributions of the processed products in the machining gap using tube electrode tools with three typical helical structures were studied through the simulation of solid–liquid coupling; this showed that a trapezoidal helical structure benefited the reduced accumulation of products in grooves and the effective removal of products from the machining gap. Secondly, the main geometric parameters of the trapezoidal helical structure, including the helical groove depth, pitch, and tooth angle, were optimized by gap flow-field simulation to enhance the removal effect on processed products. Finally, it was verified that the trapezoidal helical electrode showed a definitive and significant advantage over the ordinary cylindrical electrode in effectively removing processed products from the machining gap by the comparison of flow-field simulations and actual machining experiments.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1077
Author(s):  
Islam Md. Rashedul ◽  
Yan Zhang ◽  
Kebing Zhou ◽  
Guoqian Wang ◽  
Tianpeng Xi ◽  
...  

Electrochemical discharge machining (ECDM) is an emerging method for developing micro-channels in conductive or non-conductive materials. In order to machine the materials, it uses a combination of chemical and thermal energy. The tool electrode’s arrangement is crucial for channeling these energies from the tool electrode to the work material. As a consequence, tool electrode optimization and analysis are crucial for efficiently utilizing energies during ECDM and ensuring machining accuracy. The main motive of this study is to experimentally investigate the influence of different electrode materials, namely titanium alloy (TC4), stainless steel (SS304), brass, and copper–tungsten (CuW) alloys (W70Cu30, W80Cu20, W90Cu10), on electrodes’ electrical properties, and to select an appropriate electrode in the ECDM process. The material removal rate (MRR), electrode wear ratio (EWR), overcut (OC), and surface defects are the measurements considered. The electrical conductivity and thermal conductivity of electrodes have been identified as analytical issues for optimal machining efficiency. Moreover, electrical conductivity has been shown to influence the MRR, whereas thermal conductivity has a greater impact on the EWR, as characterized by TC4, SS304, brass, and W80Cu20 electrodes. After that, comparison experiments with three CuW electrodes (W70Cu30, W80Cu20, and W90Cu10) are carried out, with the W70Cu30 electrode appearing to be the best in terms of the ECDM process. After reviewing the research outcomes, it was determined that the W70Cu30 electrode fits best in the ECDM process, with a 70 μg/s MRR, 8.1% EWR, and 0.05 mm OC. Therefore, the W70Cu30 electrode is discovered to have the best operational efficiency and productivity with performance measures in ECDM out of the six electrodes.


Author(s):  
Jin Zhang ◽  
Fuzhu Han

Abstract This paper proposed a new method of high-speed electrical discharge machining (EDM) using rotating short arcs under composite field. By the Lorentz force, the electric force and the high-speed rotation of the tool electrode, rotating short arcs are generated between the tool electrode and the workpiece, which can greatly improve the material removal rate of difficult-to-cut materials such as titanium alloys and superalloys. Firstly, the machining equipment used to generate rotating short arcs was constructed. Secondly, single arc discharge experiment was carried out to investigate the motion characteristics of rotating short arcs. The result shows that the arcs can rotate between the tool electrode and workpiece under composite field. Then, the experiment of processing GH4169 was conducted to explore the machining characteristics of rotating short arcs milling, which indicated that rotating short arcs can achieve a much higher material removal rate (MRR). Additionally, it’s found that the magnetic field also has influence on debris, which is beneficial to debris removal. Finally, a comparative experiment was carried out. The MRR of rotating short arcs milling was three times than that of traditional EDM, and the tool electrode wear rate (TEWR) is only one-fifth of that of traditional EDM. The comparative experiment further verified that rotating short arcs milling can achieve higher MRR and lower TEWR.


Author(s):  
Yan Zhang ◽  
Islam Md. Rashedul ◽  
Lei Ji ◽  
Baoyang Jiang

Abstract Tube electrode high-speed electrochemical discharge machining (TSECDM) has been effectively used in the manufactures of micro holes with difficult-to-cut conductive materials in the field of aerospace industry. The design and parameters of circuit are critical for the machining performances of TSECDM. In this paper, the influences of circuit on the TSECDM performances are studied. Firstly, a relaxation type RLC generator is designed and analyzed by MATLAB simulation. Secondly, the effects of RLC circuit parameters such a resistor (R), capacitor (C) and inductor (L) on machining performances are investigated by experiments on the bulk of SS304 alloys by limiting factors changing. Finally, the analysis achievement indicated that the circuit selection parameters value R (15Ω); C (220nF); L (0.13mH) can be used to obtain a better machining performance.


Sign in / Sign up

Export Citation Format

Share Document