micro holes
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 122)

H-INDEX

20
(FIVE YEARS 5)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Ruifang Zhang ◽  
Kai Lv ◽  
Zhaoxin Du ◽  
Weidong Chen ◽  
Pengfei Ji ◽  
...  

In order to improve the wear and corrosion resistance of micro-arc oxidation (MAO) coating on a Ti-5Al-1V-1Sn-1Zr-0.8Mo alloy, 0–0.20 g/L graphene was added to the electrolyte to prepare micro-arc oxidation coating. The thickness, roughness, micro-morphology, and composition of the MAO coating were characterized, and the wear and corrosion resistance of the coating was tested and analyzed. The results show that with 0.05 g/L of graphene in the electrolyte, the roughness of the coating decreased from 56.76 μm to 31.81 μm. With the increase in the addition of graphene, the microstructure of the coating became more compact, the diameter of micro-holes and micro-cracks decreased, and the corrosion resistance of the coating improved. The wear tests showed that the mass loss of the coating at the early wear stage (0~100 revolutions) was greater than that at the later stage (100~250 revolutions), and the wear resistance of the coating obtained by the addition of 0.10 g/L of graphene was the highest. With 0.10 g/L of graphene, the adhesion force between the coating and the substrate alloy is the largest, reaching 57.1 N, which is 9.98 N higher than that without graphene. After salt spray corrosion for 480 h, the coating with graphene has better corrosion resistance than that of a graphene-free coating.


JOM ◽  
2021 ◽  
Author(s):  
Gerd Reichardt ◽  
Manuel Henn ◽  
Paul Reichle ◽  
Georg Umlauf ◽  
Kim Riedmüller ◽  
...  

AbstractIn deep drawing processes, the use of lubricants is mandatory in order to prevent wear on tools and surface damage to the formed sheet metal components. Here, frequently used lubricants are synthetic and mineral oils, emulsions, and waxes. However, these conventional lubricants have to be applied to the sheet material prior to the forming operation and removed afterwards by cleaning processes. Additionally, the lubricants often contain substances that are harmful to the environment and to human health. To counteract these economic and ecological disadvantages, research is currently being conducted on a novel tribological system. For this, volatile media such as liquid carbon dioxide and gaseous nitrogen are being used, and are introduced directly into the friction zones between the tool and the sheet metal material during deep drawing under high pressure through special laser-drilled micro-holes. This paper covers the latest investigations and findings regarding the design of flow-optimized micro-holes, the laser drilling process, the friction characterization on tool radii, and the tool wear to be expected when using the lubrication medium CO2.


2021 ◽  
Vol 11 (12) ◽  
pp. 1975-1987
Author(s):  
Liang Wang ◽  
Rong Guan ◽  
Qunyong Zhang ◽  
Kaibo Xia ◽  
Naifei Ren

In this study, both super alloy GH4037 and stainless steel 304 were selected as experimental materials to be processed by LASERTEC 80 PowerDrill three-dimensional solid laser machining center. The structure of the micro hole was researched by 3D Laser Scanning Confocal Microscope and Scanning Electron Microscope (SEM). Meanwhile, The holes taper, entrance and exit ends diameter, microcrack, recast layer, orifice deposits and the heat affected zone (HAZ) were also investigated. The single factor experimental method was used to research the influences of defocusing amount, pulse energy, repetition frequency, and pulse duration on quality of micro holes. Experimental results indicated that the holes entrance and exit ends diameter enlarged with increased pulse energy from 3.4 J to 4.2 J. The entrance and exit ends diameter of holes decreased with increased pulse duration from 0.5 ms to 2.5 ms. Besides, the variation of holes diameter and taper were more obvious with repetition frequency changing from 10 Hz to 30 Hz, and variation range for the entrance and exit ends diameters and taper were not obvious with increased defocusing amount from −2 mm to 2 mm. The herein results indicated that pulse energy was one of the most significant influencing elements, and higher pulse energy could bring about lower hole taper within a certain range. Meanwhile, shorter pulse duration reduced splash and debris of holes surface. The recast layer, micro crack and HAZ were existed in the both kinds of experimental materials. Moreover, the microcrack and recast layer on holes wall of GH4037 were less than those of 304, and the HAZ in drilling hole for GH4037 was more than that of 304. The experimental results for the holes size were compared with corresponding simulation results under different defocusing amount respectively, which verified the accuracy of simulation results. Combining the above factors, the quality of micro holes drilling on super alloy GH4037 was better than stainless steel 304.


Author(s):  
Zhifang Hu ◽  
Weimin Yue ◽  
Huanpeng Chi ◽  
Zongan Xue ◽  
Guanwei Tang ◽  
...  

AbstractRadial jet drilling (RJD) technology has been applied to enhance the recovery of difficult-to-produce reserves by multiple horizontal micro-holes. The micro-hole length drilled by high-pressure water jets is of vital importance for the oil and gas recovery effect and is usually tens of meters long for applications in maturing oil fields in China. The water jets are generated by multiple orifices nozzle generally. Many studies focused on improving the self-propelled force generated by water jets to increase the micro-hole length. However, there are few researches on improving the micro-hole extension capacity in terms of optimizing the flexible hose that acts as the drill pipe in conventional drilling technology. This paper firstly studied the relationship between the flexible hose length and the micro-hole extension limit according to the analytical model to calculate the micro-hole extension limit. Then, the method to optimize the flexible hose length and the flow rate was developed aiming to obtain maximum micro-hole extension limit. The results show that the micro-hole extension limit decreases logarithmically with the increase in the flexible hose length under the condition that the takes the maximum value. The optimization model is applied by a field case and is proved to be effective to increase the micro-hole extension limit. This study is significant to improve the micro-hole extension capacity. Moreover, it provides a reference for the design of the hydraulics and selection of flexible hose for the RJD.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1754
Author(s):  
Chi Liu ◽  
Liyong Ma ◽  
Ziyong Zhang ◽  
Zhuo Fu ◽  
Lijuan Liu

The 2524-T3 aluminum alloy was subjected to fatigue tests under the conditions of R = 0, 3.5% NaCl corrosion solution, and the loading cycles of 106, and the S-N curve was obtained. The horizontal fatigue limit was 169 MPa, which is slightly higher than the longitudinal fatigue limit of 163 MPa. In addition, detailed microstructural analysis of the micro-morphological fatigue failure features was carried out. The influence mechanism of corrosion on the fatigue crack propagation of 2524-T3 aluminum alloy was discussed. The fatigue source characterized by cleavage and fracture mainly comes from corrosion pits, whose expansion direction is perpendicular to the principal stress direction. The stable propagation zone is characterized by strip fractures. The main feature of the fracture in the fracture zone is equiaxed dimples. The larger dimples are mixed with second-phase particles ranging in size from 1 to 5 μm. There is almost a one-to-one correspondence between the dimples and the second-phase particles. The fracture mechanism of 2524 alloy at this stage is transformed into a micro-holes connection mechanism, and the nucleation of micropores is mainly derived from the second-phase particles.


Author(s):  
Rajkeerthi E ◽  
Hariharan P

Abstract Surface integrity of micro components is a major concern particularly in manufacturing industries as most geometry of the products must meet out necessary surface quality requirements. Advanced machining process like electrochemical micro machining possess the capabilities to machine micro parts with best surface properties exempting them from secondary operations. In this research work, different electrolytes have been employed for producing micro holes in A286 super alloy material to achieve the best surface quality and the measurement of surface roughness and surface integrity to evaluate the machined surface is carried out. The machined micro hole provides detailed information on the geometrical features. A study of parametric analysis meant for controlling surface roughness and improvement of surface integrity has been made to find out the suitable parameters for machining. The suitability of various electrolytes with their dissolution mechanism and the influence of various electrolytes have been thoroughly studied. Among the utilized electrolytes, EG + NaNO3 electrolyte provided the best results in terms of overcut and average surface roughness.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2545
Author(s):  
Kun Peng ◽  
Ningning Zhang ◽  
Jiarui Zhang ◽  
Peizong Chen ◽  
Jia Yan ◽  
...  

Broadband near-infrared (NIR) luminescent materials have been continuously pursued as promising candidates for optoelectronic devices crucial for wide applications in night vision, environment monitoring, biological imaging, etc. Here, graded GexSi1−x (x = 0.1–0.3) alloys are grown on micro-hole patterned Si(001) substrates. Barn-like islands and branch-like nanostructures appear at regions in-between micro-holes and the sidewalls of micro-holes, respectively. The former is driven by the efficient strain relation. The latter is induced by the dislocations originating from defects at sidewalls after etching. An extensive broadband photoluminescence (PL) spectrum is observed in the NIR wavelength range of 1200–2200 nm. Moreover, the integrated intensity of the PL can be enhanced by over six times in comparison with that from the reference sample on a flat substrate. Such an extensively broad and strong PL spectrum is attributed to the coupling between the emissions of GeSi alloys and the guided resonant modes in ordered micro-holes and the strain-enhanced decomposition of alloys during growth on the micro-hole patterned substrate. These results demonstrate that the graded GexSi1−x alloys on micro-hole pattered Si substrates may have great potential for the development of innovative broadband NIR optoelectronic devices, particularly to realize entire systems on a Si chip.


Author(s):  
Saranya Sambathkumar ◽  
Ravi Sankar Arunagirinathan

Electrochemical discharge machining (ECDM) processes have been used to realize miniature structures such as micro-channels and micro-holes on non-conductive materials such as quartz and Pyrex for a variety of applications. However, for realizing mechanical/physical sensors, actuators, energy harvesters, and resonators on glass substrates, free-standing devices with movable components such as beam-mass structures and cantilevers are required. There has been a negligible focus on developing miniature glass-based devices with movable components primarily due to the non-linear material removal rate (MRR) of the ECDM processes, requiring continuous measurement, tracking, and maintaining the working gap in the range of a few micrometers during micromachining. A couple of techniques were proposed to address maintaining a constant working gap, however, using costly equipment with complex feedback mechanisms. We report a two-stage experimental approach – without using feedback mechanisms and additional equipment – to realize micro-mechanical planar cantilever beam-mass structures on thick quartz substrates in the present work. In the first stage, the process parameters such as applied voltage, tool travel rate (TTR), and initial working gap ( Wg) are optimized for fabricating broader and deeper micro-channels using needle-shaped tools. In the second stage, using the optimized parameters, an array of micro-channels is fabricated. The cumulative depth, corresponding depth, and the width of each layer of the channels are measured, and this data is utilized for fabricating planar beam-mass structures on quartz substrates. We envisage that the experimental results of the present study would be beneficial for ECDM researchers to fabricate glass-based miniature devices with movable components without using complex tools and equipment.


Author(s):  
Mukesh Tak ◽  
Rakesh Mote

Abstract Titanium and its alloys are considered as difficult to cut material classes, and their processing through the traditional machining methods is a painful task. These materials have an outstanding combination of properties like high specific strength, excellent corrosive resistance, and exceptional bio-compatibility; therefore, they have broad fields of application like aerospace, MEMS, bio-medical, etc. Electrochemical micromachining (ECMM) is a very vital process for the production of micro-domain features in difficult-to-machine materials. The machining issue with ECMM for titanium and their alloys is the passive layer formation, which hinders the dissolution and causes stray removal. To overcome these issues, a hybrid ECMM approach has been proposed by using a diamond abrasive tool combined with ECMM. The present study focuses on the detailed characterization of the passive layer formed using the hybrid approach. Through the use abrasive tool, the abrasive grits scoop the passive layer by the mechanical grinding action, formed in micro-drilling on the Ti6Al4V alloy to expose a new surface for further dissolution. The micro-holes were produced incorporating the abrasive tool and then compared by the holes created using a cylindrical tool (tool without abrasive). The taper and the stray dissolution of the micro-holes were also compared, produced at different applied potentials. The minimum average entry overcut and exit overcut of the hole were obtained as 29 µm and 3 µm, respectively, also a micro-hole with the lowest taper of 2.7°, achieved by the use of the abrasive micro tool.


Sign in / Sign up

Export Citation Format

Share Document