Dynamical Model of Walking Transition Considering Nonlinear Friction with Floor

Author(s):  
Xiang Li ◽  
◽  
Hiroki Imanishi ◽  
Mamoru Minami ◽  
Takayuki Matsuno ◽  
...  

Biped locomotion created by a controller based on Zero-Moment Point (ZMP) known as reliable control method looks different from human’s walking on the view point that ZMP-based walking does not include falling state, and it’s like monkey walking because of knee-bended walking profiles. However, the walking control that does not depend on ZMP is vulnerable to turnover. Therefore, keeping the event-driven walking of dynamical motion stable is important issue for realization of human-like natural walking. In this research, a walking model of humanoid robot including slipping, bumping, surface-contacting and line-contacting of foot is discussed, and its dynamical equation is derived by the Extended NE method. In this paper we introduce the humanoid model which including the slipping foot and verify the model.

Robotica ◽  
2000 ◽  
Vol 18 (6) ◽  
pp. 651-657 ◽  
Author(s):  
K. Mitobe ◽  
G. Capi ◽  
Y. Nasu

In this paper, a new application of the ZMP (Zero Moment Point) control law is presented. The objective of this control method is to obtain a smooth and soft motion based on a real-time control. In the controller, the ZMP is treated as an actuating signal. The coordinates of the robot body are fed back to obtain its position. The proposed control method was applied on two different biped robots, and its validity is verified experimentally.


2019 ◽  
Vol 6 ◽  
pp. 83-94
Author(s):  
Jesus E. Fierro P. ◽  
J. Alfonso Pamanes G. ◽  
Victor De-Leon-Gomez

The commercial Nao humanoid robot has 11 DOF in legs. Even if these legs include 12 revolute joints, only 11 actuators are employed to control the walking of the robot. Under such conditions, the mobility of the pelvis and that of the oscillating foot are mutually constrained at each step. Besides, the original gait provided by the manufacturer company of the Nao employs only single support phases during the walking. Because of both issues, the reduced mobility in legs and the use of only single support phases, the stability of the walking is affected. To contribute to improving such stability, in this paper an approach is proposed that incorporates a double support phase and a gait based on cycloidal time functions for motions of the pelvis and those of the oscillating foot. To assess the stability of the walking an index is applied, which is based on the notion of zero-moment point (ZMP) of the static foot at each step. Results of experimental tests show that the proposed gait enhances the stability of the robot during the walking.


Sign in / Sign up

Export Citation Format

Share Document