A Secure Virtual Machine Allocation Strategy Against Co-Resident Attacks

Author(s):  
Hefei Jia ◽  
Xu Liu ◽  
Xiaoqiang Di ◽  
Hui Qi ◽  
Binbin Cai ◽  
...  

In the area of network development, especially cloud computing, security has been a long-standing issue. In order to better utilize physical resources, cloud service providers usually allocate different tenants on the same physical machine, i.e., physical resources such as CPU, memory, and network devices are shared among multiple tenants on the same host. Virtual machine (VM) co-resident attack, a serious threat in this sharing methodology, includes malicious tenants who tend to steal private data. Currently, most solutions focus on how to eliminate known specific side channels, but they have little effect on unknown side channels. Compared to eliminating side channels, developing a VM allocation strategy is an effective countermeasure against VM co-resident attack as it reduces the probability of VM co-residency, but research on this topic is still in its infancy. In this study, firstly, a novel, efficient, and secure VM allocation strategy named Against VM Co-resident attack based on Multi-objective Optimization Best Fit Decreasing (AC-MOBFD) is proposed, which simultaneously optimizes load balancing, energy consumption, and host resource utilization during VM placement. Subsequently, security of the proposed allocation strategy is measured using two metrics – VM attack efficiency and VM attack coverage. Extensive experiments on simulated and real cloud platforms, CloudSim and OpenStack, respectively, demonstrate that using our strategy, the attack efficiency of VM co-residency is reduced by 37.3% and VM coverage rate is reduced by 24.4% when compared to existing strategies. Finally, we compare the number of co-resident hosts with that of hosts in a real cloud platform. Experimental results show that the deviation is below 9.4%, which validates the feasibility and effectiveness of the presented strategy.

2021 ◽  
Vol 11 (21) ◽  
pp. 9940
Author(s):  
Jack Marquez ◽  
Oscar H. Mondragon ◽  
Juan D. Gonzalez

Cloud computing systems are rapidly evolving toward multicloud architectures supported on heterogeneous hardware. Cloud service providers are widely offering different types of storage infrastructures and multi-NUMA architecture servers. Existing cloud resource allocation solutions do not comprehensively consider this heterogeneous infrastructure. In this study, we present a novel approach comprised of a hierarchical framework based on genetic programming to solve problems related to data placement and virtual machine allocation for analytics applications running on heterogeneous hardware with a variety of storage types and nonuniform memory access. Our approach optimizes data placement using the Hadoop File System on heterogeneous storage devices on multicloud systems. It guarantees the efficient allocation of virtual machines on physical machines with multiple NUMA (nonuniform memory access) domains by minimizing contention between workloads. We prove that our solutions for data placement and virtual machine allocation outperform other state-of-the-art approaches.


Author(s):  
Kenga Mosoti Derdus ◽  
Vincent Oteke Omwenga ◽  
Patrick Job Ogao

Cloud computing has gained a lot of interest from both small and big academic and commercial organizations because of its success in delivering service on a pay-as-you-go basis. Moreover, many users (organizations) can share server computing resources, which is made possible by virtualization. However, the amount of energy consumed by cloud data centres is a major concern. One of the major causes of energy wastage is the inefficient utilization of resources. For instance, in IaaS public clouds, users select Virtual Machine (VM) sizes set beforehand by the Cloud Service Providers (CSPs) without the knowledge of the kind of workloads to be executed in the VM. More often, the users overprovision the resources, which go to waste. Additionally, the CSPs do not have control over the types of applications that are executed and thus VM consolidation is performed blindly. There have been efforts to address the problem of energy consumption by efficient resource utilization through VM allocation and migration. However, these techniques lack collection and analysis of active real cloud traces from the IaaS cloud. This paper proposes an architecture for VM consolidation through VM profiling and analysis of VM resource usage and resource usage patterns, and a VM allocation policy. We have implemented our policy on CloudSim Plus cloud simulator and results show that it outperforms Worst Fit, Best Fit and First Fit VM allocation algorithms. Energy consumption is reduced through efficient consolidation that is informed by VM resource consumption.


2018 ◽  
Vol 7 (4.19) ◽  
pp. 1030
Author(s):  
S. K. Sonkar ◽  
M. U.Kharat

Primary target of cloud provider is to provide the maximum resource utilization and increase the revenue by reducing energy consumption and operative cost. In the service providers point of view, resource allocation, resource sharing, migration of resources on demand, memory management, storage management, load balancing, energy efficient resource usage, computational complexity handling in virtualization are some of the major tasks that has to be dealt with. The major issue focused in this paper is to reduce the energy consumption problem and management of computation capacity utilization.  For the same, an energy efficient resource management method is proposed to grip the resource scheduling and to minimize the energy utilized by the cloud datacenters for the computational work. Here a novel resource allocation mechanism is proposed, based on the optimization techniques. Also a novel dynamic virtual machine (VM) allocation method is suggested to help dynamic virtual machine allocation and job rescheduling to improve the consolidation of resources to execute the jobs. Experimental results indicated that proposed strategy outperforms as compared to the existing systems.  


2018 ◽  
Vol 7 (2.7) ◽  
pp. 813
Author(s):  
B Thirumala Rao ◽  
K Nandavardhini ◽  
K Navya ◽  
G Krishna Venkata Sunil

Virtual machine position (VMP) is a critical issue in choosing most appropriate arrangement of physical machines (PMs) for an arrangement of virtual machines (VMs) in distributed computing condition. These days information concentrated applications for handling huge information are being facilitated in the cloud. Since the cloud condition gives virtualized assets to calculation, and information concentrated applications require correspondence between the registering hubs, the situation of Virtual Machines (VMs) and area of information influence the general calculation time. The essential target is to decrease cross system activity and transmission capacity use, by setting required number of VMs and information in Physical Machines (PMs) which are physically nearer. This paper exhibits and assesses by a meta-heuristic calculation in view of Parallel Computing and Optimization (PCO) which select an arrangement of adjoining PMs for setting information and VMs . In the wake of choosing the PMs, the information are duplicated to the capacity gadgets of the PMs and the required number of VMs are begun on the PMs based on their VM allotment limits. Recreation comes about demonstrate that this determination diminishes the whole of separations amongst VMs and henceforth lessens the activity fruition time.


Cloud computing is a new paradigm which provides cloud storage service to manage, maintain and back up private data remotely. For privacy concerns the data is kept encrypted and made available to users on demand through cloud service provider over the internet. The legacy encryption techniques rely on sharing of keys, so service providers and end users of the cloud have exclusive rights on the data thus the secrecy may loss. Homomorphic Encryption is a significant encryption technique which allows users to perform limited arithmetic on the enciphered data without loss of privacy and security. This paper addresses a new simple and non-bootstrappable Fully Homomorphic Encryption Scheme based on matrices as symmetric keys with access control.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2880
Author(s):  
Abbas Akbari ◽  
Ahmad Khonsari ◽  
Seyed Mohammad Ghoreyshi

In recent years, a large and growing body of literature has addressed the energy-efficient resource management problem in data centers. Due to the fact that cooling costs still remain the major portion of the total data center energy cost, thermal-aware resource management techniques have been employed to make additional energy savings. In this paper, we formulate the problem of minimizing the total energy consumption of a heterogeneous data center (MITEC) as a non-linear integer optimization problem. We consider both computing and cooling energy consumption and provide a thermal-aware Virtual Machine (VM) allocation heuristic based on the genetic algorithm. Experimental results show that, using the proposed formulation, up to 30 % energy saving is achieved compared to thermal-aware greedy algorithms and power-aware VM allocation heuristics.


Sign in / Sign up

Export Citation Format

Share Document