Development of Building Height Data in Peru from High-Resolution SAR Imagery

2014 ◽  
Vol 9 (6) ◽  
pp. 1042-1049 ◽  
Author(s):  
Wen Liu ◽  
◽  
Fumio Yamazaki ◽  
Bruno Adriano ◽  
Erick Mas ◽  
...  

Building data, such as footprint and height, are important information for pre- and post-event damage assessments when natural disasters occur. However, these data are not easily available in many countries. Because of the remarkable improvements in radar sensors, high-resolution (HR) Synthetic Aperture Radar (SAR) images can provide detailed ground surface information. Thus, it is possible to observe a single building using HR SAR images. In this study, a new method is developed to detect building heights automatically from two-dimensional (2D) geographic information system (GIS) data and a single HR TerraSAR-X (TSX) intensity image. A building in a TSX image displays a layover from the actual position to the direction of the sensor, because of the side-looking nature of the SAR. Since the length of the layover on a ground-range SAR image is proportional to the building height, it can be used to estimate this height. We shift the building footprint obtained from 2D GIS data toward the sensor direction. The proposed method was applied to a TSX image of Lima, Peru in the HighSpot mode with a resolution of about 1 m. The results were compared with field survey photos and an optical satellite image, and a reasonable level of accuracy was achieved.

2005 ◽  
Vol 21 (1_suppl) ◽  
pp. 267-274 ◽  
Author(s):  
Masayuki Kohiyama ◽  
Fumio Yamazaki

The damaged areas of the 2003 Bam, Iran, earthquake were detected using 15-meter-resolution satellite imagery acquired by Terra-ASTER. First, fluctuation of digital numbers was modeled as a normal random variable based on 17 pre-event images on a pixel-by-pixel basis. Then, the deviation value of each digital number in the post-event image was evaluated and converted into the confidence level, which indicates the possibility of an abnormal ground surface change. The detected damaged areas were verified with a high-resolution satellite image and it was observed that the areas with earthquake influence were mostly identified. However, the pixels with significant change were induced not only from heavily damaged buildings but also dusty roads, possibly due to demolition work. It was suggested that prior knowledge like a high-resolution pre-event image would assist the interpretation of the detected result.


2009 ◽  
Vol 64 (5) ◽  
pp. 490-500 ◽  
Author(s):  
Uwe Soergel ◽  
Eckart Michaelsen ◽  
Antje Thiele ◽  
Erich Cadario ◽  
Ulrich Thoennessen

Author(s):  
S. Auer ◽  
A. Donaubauer

Motivated by the distinct appearance of facades in high resolution SAR images with respect to signal incidence angles and polarizations, this paper introduces a way to fuse SAR imagery and 3D GIS (geoinformation system) data (format: CityGML) based on SAR simulation methods. To this end, the known building geometry is used to simulate the extent of building layover for identifying the related image parts in high resolution TerraSAR-X images. The simulated SAR images are generated and geocoded by an automated processing chain which is initialized by the automated parsing of the CityGML dataset and the TerraSAR-X orbit file. Confirming the functionality of the developed interface between simulation and CityGML, first results are presented for an urban scene in the Munich city center in order to discuss future opportunities in the context of change detection applications.


Author(s):  
Susanne Lehner ◽  
Jochen Horstmann ◽  
Tobias Schneiderhan ◽  
Johannes Schulz-Stellenfleth

In all European countries with shallow coastal waters and strong mean wind speed at the coast the planning and construction of offshore wind farms is on the way and large parts of the North Sea and the Baltic are under investigation as to whether they are suitable for offshore parks. In this paper it is demonstrated how satellite images taken by spaceborne radar sensors can be used to determine mesoscale wind fields and thus help in the task of planning offshore wind farms. High resolution SAR images acquired by the European remote sensing satellite ERS 2 are presented which show single wind turbines (Fig. 1). The derivation of high resolution wind fields from SAR images is explained and comparisons with numerical models are presented.


Author(s):  
S. Abdikan ◽  
C. Bayik ◽  
M. Ustuner ◽  
F. Balik Sanli

Abstract. In this paper we present the initial results of PAZ Synthetic Aperture Radar (SAR) imagery for the first time. In the study, the potential of repeat-pass high resolution PAZ images were investigated. To this aim, both linear backscatter and interferometric results were presented. We used multi-temporal X-band (3.1 cm wavelength) new generation single look complex (SLC) data from Spanish PAZ in single polarization data. PAZ is based on TerraSAR-X/TanDEM-X platform to establish a constellation with them to shorten the revisit time and increase data acquisition capacity. We applied two analysis on PAZ data to assess the performance of the satellite images. For the analysis a semi-arid and almost flat region of Central Anatolia was selected. The images are acquired in both ascending and descending orbits. Each pair has 33 days of temporal baselines. Firstly, backscatter analysis was conducted over the region for different land cover classes. Secondly interferometric analysis was applied to determine phase difference and coherence features. As the region has sand dunes, bareland and uncultivated agricultural fields the coherence analysis showed high values, while cultivated fields showed variations of coherence due to different growth of vegetation. Since the region is prone to sinkhole formation the high-resolution PAZ indicated its advantage as determining a sinkhole that has a circle shape. The displacement of ground surface is determined in line of sight direction.


Sign in / Sign up

Export Citation Format

Share Document