Development of Method Using a Combination of DGPS and Scan Matching for the Making of Occupancy Grid Maps for Localization

2013 ◽  
Vol 25 (3) ◽  
pp. 506-514 ◽  
Author(s):  
Junji Eguchi ◽  
◽  
Koichi Ozaki

This paper describes a method of making an occupancy grid map through the combined use of DGPS and scan matching. In outdoor environments such as city areas, high-accuracy localization is required for autonomous navigation. Scan matching with a laser scanner and an occupancy grid map consisting of precise structure information on the environment is one of the most accurate localization methods. However, mismatching on the map sometimes occurs, resulting in the robot losing its own position. Although a GPS device, an absolute positioning device, is valid for estimating position and attitude to a certain degree of accuracy, GPS often obtains erroneous positions for multipath problems which occur around tall buildings. In order to estimate the position and attitude of robots more stably, the authors have developed a method of making an occupancy grid map, which corresponds to DGPS directions and has an accurate shape, by using of some accurate DGPS measurement points and the SLAM method. In autonomous navigation, the robot trajectory is estimated using the particle filter method, evaluation and resampling are done using the two ways mentioned above, and attitude is calculated using DGPS measurement points and the result of scan matching. In this paper, the performance of the map-making method and localization method for autonomous navigation is shown through experiments which are evaluated as to the accuracy of the map in an actual environment.

2020 ◽  
Vol 17 (4) ◽  
pp. 535-542
Author(s):  
Ravinder Singh ◽  
Akshay Katyal ◽  
Mukesh Kumar ◽  
Kirti Singh ◽  
Deepak Bhola

Purpose Sonar sensor-based mobile robot mapping is an efficient and low cost technique for the application such as localization, autonomous navigation, SLAM and path planning. In multi-robots system, numbers of sonar sensors are used and the sound waves from sonar are interacting with the sound wave of other sonar causes wave interference. Because of wave interference, the generated sonar grid maps get distorted which resulted in decreasing the reliability of mobile robot’s navigation in the generated grid maps. This research study focus in removing the effect of wave interfaces in the sonar mapping to achieve robust navigation of mobile robot. Design/methodology/approach The wrong perception (occupancy grid map) of the environment due to cross talk/wave interference is eliminated by randomized the triggering time of sonar by varying the delay/sleep time of each sonar sensor. A software-based approach randomized triggering technique (RTT) is design in laboratory virtual instrument engineering workbench (LabVIEW) that randomized the triggering time of the sonar sensor to eliminate the effect of wave interference/cross talk when multiple sonar are placed in face-forward directions. Findings To check the reliability of the RTT technique, various real-world experiments are perform and it is experimentally obtained that 64.8% improvement in terms of probabilities in the generated occupancy grid map has been attained when compared with the conventional approaches. Originality/value This proposed RTT technique maybe implementing for SLAM, reliable autonomous navigation, optimal path planning, efficient robotics vision, consistent multi-robotic system, etc.


2018 ◽  
Vol 6 (2) ◽  
pp. 93-114 ◽  
Author(s):  
Ravinder Singh ◽  
Kuldeep Singh Nagla

Purpose Accurate perception of the environment using range sensors such as laser scanner, SONAR, infrared, vision, etc., for the application, such as path planning, localization, autonomous navigation, simultaneously localization and mapping, is a highly challenging area. The reliability of the perception by range sensors relies on the sensor accuracy, precision, sensor model, sensor registration, resolution, etc. Laser scanner is even though accurate and precise but still the efficient and consistent mapping of the environment is yet to be attained because laser scanner gives error as the extrinsic and intrinsic parameters varied which cause specular reflection, refraction, absorption, etc., of the laser beam. The paper aims to discuss this issue. Design/methodology/approach This paper presents an error analysis in sensory information of laser scanner due to the effect of varying the scanning angle with respect to the optical axis and surface reflectivity or refractive index of the targets. Uncertainties caused by these parameters are reduced by proposing a new technique, tilt mounting system (TMS) with designed filters of tilting the angular position of a laser scanner with the best possible selection of range and scanning angle for the robust occupancy grid mapping. Various experiments are performed in different indoor environments, and the results are validated after the implementation of the TMS approach with designed filters. Findings After the implementation of the proposed TMS approach with filters, the errors in the laser grid map are reduced by 15.6 percent, which results in 62.5 percent reduction in the collision of a mobile robot during autonomous navigation in the laser grid map. Originality/value The TMS approach with designed filter reduces the effect of variation in intrinsic and extrinsic parameters to generate efficient laser occupancy grid map to achieve collision-free autonomous navigation.


2014 ◽  
Vol 15 (5) ◽  
pp. 2089-2100 ◽  
Author(s):  
Hao Li ◽  
Manabu Tsukada ◽  
Fawzi Nashashibi ◽  
Michel Parent

Sign in / Sign up

Export Citation Format

Share Document