scholarly journals STABILITY AND ACCURACY OF THE ROBUST SYSTEM FOR STABILIZING THE ROTOR FLUX-LINKAGE OF AN ASYNCHRONOUS ELECTRIC DRIVE AT RANDOM VARIATIONS OF THE UNCERTAIN PARAMETERS WITHIN THE SPECIFIED BOUNDARIES

2018 ◽  
Vol 0 (4) ◽  
pp. 35-39
Author(s):  
I. N. Khlopenko ◽  
S. A. Rozhkov ◽  
N. J. Khlopenko
Author(s):  
G.M. Simakov ◽  
◽  
V.V. Topovskiy ◽  
I.A. Ilyenkov ◽  
◽  
...  

With the development of electronic systems, the control of various asynchronous type electric motors is becoming more efficient and accurate. Such engines are used everywhere in the world, the variety of tasks performed by such mechanisms is growing every day, and the need for them is not decreasing. Nowadays, AC electric drive systems based on an asynchronous motor are becoming more widespread. This is due to the high reliability, simple design and relatively low cost of induction motors, as well as the rapid development of power converter technology, which makes it pos¬sible to create various types of semiconductor converters and reliable power supplies. In most cases, the vector control system is built for a pre-magnetized electric drive. This article discusses the synthesis of a vector control system for an asynchronous motor without preliminary magnetization, and also considers algorithms for vector control of an electromechanical unbalanced vibration module without preliminary magnetization of the asynchronous motor. Aim. To develop a control structure for an asynchronous motor of an unbalanced vibration module. Introduce a division link into the management structure. Synthesize a speed controller, rotor flux linkage and two components of the stator current. Compensate for the EMF action in the channels of the transverse and longitudinal axis. Provide the control system with the ability to reverse the electric machine. Implement the simulation of the resulting system and conduct a study of the results obtained, having obtained dynamic characteristics. Methods. The vector control system is constructed in the form of a stabilization channel of the rotor flux linkage module and a channel for controlling the rotor rotation speed. To achieve the desired result, we introduce a nonlinear regulator of the division link type into the control structure. This will convert the nonlinear structure to linear. Let's compensate the EMF action in the channels of the transverse and longitudinal axis. Having realized the simulation of the obtained system, we will conduct a study of the results obtained, having obtained dynamic characteristics. Results. Structural modeling was carried out in the MATLAB/Simulink software package. For the purpose of a comparative assessment of the synthesis results of a control system with a torque regulator in the form of a division link, a subordinate control system will also be synthesized, which has similar parameters of the power unit. Conclusion. The choice of the motor torque as the output coordinate makes it possible to significantly simplify the mathematical model of the induction motor. In addition to the features of the mathematical model of an asynchronous electric motor, in this work it is necessary to take into account the features of the vibration module as a load. In this case, two main features can be distinguished – a large moment of inertia of the flywheel masses of the electric drive, as well as a sinusoidal dependence of the moment of resistance on the angle of rotation of the rotor.


Author(s):  
Igor' Polyuschenkov

The materials on the development of asynchronous electric drive with scalar control are given. The technical solutions associated with the design of software and hardware parts of the microprocessor control system are described. When developed, tools of model-based programming technique are used.


2017 ◽  
Vol 66 (1) ◽  
pp. 179-187
Author(s):  
Felix Klute ◽  
Torben Jonsky

Abstract One advantage of multi-phase machines is the possibility to use the third harmonic of the rotor flux for additional torque generation. This effect can be maximised for Permanent Magnet Synchronous Machines (PMSM) with a high third harmonic content in the magnet flux. This paper discusses the effects of third harmonic current injection (THCI) on a five-phase PMSM with a conventional magnet shape depending on saturation. The effects of THCI in five-phase machines are shown in a 2D FEM model in Ansys Maxwell verified by measurement results. The results of the FEM model are analytically analysed using the Park model. It is shown in simulation and measurement that the torque improvement by THCI increases significantly with the saturation level, as the amplitude of the third harmonic flux linkage increases with the saturation level but the phase shift of the rotor flux linkage has to be considered. This paper gives a detailed analysis of saturation mechanisms of PMSM, which can be used for optimizing the efficiency in operating points of high saturations, without using special magnet shapes.


Author(s):  
I. V. Shestakov ◽  
N. R. Safin

The paper introduces the results of mathematical simulation of the operating modes of an asynchronous motor when powered by a sinusoidal voltage source and a width-modulated voltage pulse source. The study shows the possibilities of increasing the energy efficiency of an asynchronous electric drive. Findings of research show the feasibility of studying the switching of the motor power source from a pulse width-modulated voltage to a sinusoidal voltage source in the nominal operating mode in order to increase the energy efficiency of the electric drive


2019 ◽  
Vol 144 (3) ◽  
pp. 32-39
Author(s):  
B.I. Mokin ◽  
◽  
O.B. Mokin ◽  
V.V. Horeniuk ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document