Use of a Spine Robot Employing a Real Time Force Control Algorithm to Develop, Simulate, and Compare Spinal Biomechanical Testing Protocols: Eccentric Loading, Pure Moment, and a Novel Head Weight Protocol

Author(s):  
Daniel Wido
Author(s):  
Daniel M. Wido ◽  
Denis J. DiAngelo ◽  
Brian P. Kelly

A standard biomechanical testing protocol for evaluation of the sub-axial cervical spine is the application of pure bending moments to the free end of the spine (with opposing end fixed) and measurement of its motion response. The pure moment protocol is often used to compare spinal fusion instrumentation and has also been used to evaluate non-fusion instrumentation (e.g. disc arthroplasty devices) [1,2]. A variety of different testing systems have been employed to implement pure moment application. In cases where the loading is applied quasi-statically using a series of weights and pulleys the spine may relax between intermittent loading phases and/or unintended loading may be applied causing experimental artifact. Our objective was to use an existing programmable robotic testing platform (Spine Robot) to develop a novel real time force control strategy to simulate pure moment loading under precisely controlled continuous movement conditions. This would serve to advance robotic testing capabilities with an end goal to simulate different protocols in the same platform, and to potentially minimize fixturing and quasi-static artifacts.


Author(s):  
Brian P. Kelly ◽  
Nephi A. Zufelt ◽  
Elizabeth J. Sander ◽  
Denis J. DiAngelo

Current in vitro testing methodologies remain limited in the ability to explore spinal dynamics. The gold standard of flexibility testing has traditionally focused on evaluating MSU rotational ranges of motion only. While such data may be applied towards evaluation of the Instantaneous Axis of Rotation (IAR), many systems lack the needed sensitivity. The result is that there is currently no consensus on the location of the IAR. Further, very limited data or insight can be gathered as to the precise kinematic or dynamic state of the MSU, or the influence of surgically implanted motion restoration devices. For example, total disc arthroplasty devices are typically rigid mechanical devices that impose an IAR or IAR range. How might this imposed IAR affect MSU mechanics? How might variations in surgical placement of an implant be scientifically quantified? More recently an emerging group of compliant motion restoration devices are being developed that require new methods of evaluation. How well does a compliant device restore the native mechanics of the disc or MSU? To address and understand these increasingly important issues, novel, more advanced biomechanical testing protocols need to be developed.


Author(s):  
T. F. Bonner ◽  
L. Gilbertson ◽  
R. W. Colbrunn

In spine testing, methods have been developed to apply pure moments to a single axis of the spine to elucidate the mechanical properties of the spine. The application of those concepts continues to be applied with custom loading frames, custom robotics systems, and adaptation of commercial robotic technology. With these systems and pure moment testing, spinal biomechanics variables such as the neutral zone and range of motion can be determined. As more complex testing systems with higher degrees of freedom (DOF) capabilities are developed, dynamic testing becomes a possibility. However, these more complex testing systems require more complex control schemes.


2013 ◽  
Vol 7 (3) ◽  
Author(s):  
Brian P. Kelly ◽  
Denis J. DiAngelo

Robotic testing offers potential advantages over conventional methods including coordinated control of multiple degrees of freedom (DOF) and enhanced fidelity that to date have not been fully utilized. Previous robotic efforts in spine biomechanics have largely been limited to pure displacement control methods and slow quasi-static hybrid control approaches incorporating only one motion segment unit (MSU). The ability to program and selectively direct single or multibody spinal end loads in real-time would represent a significant step forward in the application of robotic testing methods. The current paper describes the development of a custom programmable robotic testing system and application of a novel force control algorithm. A custom robotic testing system with a single 4 DOF serial manipulator was fabricated and assembled. Feedback via position encoders and a six-axis load sensor were established to develop, program, and evaluate control capabilities. A calibration correction scheme was employed to account for changes in load sensor orientation and determination of spinal loads. A real-time force control algorithm was implemented that employed a real-time trajectory path modification feature of the controller. Pilot tests applied 3 Nm pure bending moments to a human cadaveric C2–T1 specimen in flexion and extension to assess the ability to control spinal end loads, and to compare the resulting motion response to previously published data. Stable accurate position control was achieved to within ±2 times the encoder resolution for each axis. Stable control of spinal end body forces was maintained to within a maximum error of 6.3 N in flexion. Sagittal flexibility data recorded from rostral and caudally placed six-axis load sensors were in good agreement, indicating a pure moment loading condition. Individual MSU rotations were consistent with previously reported data from nonrobotic protocols. The force control algorithm required 5–10 path iterations before converging to programmed end body forces within a targeted tolerance. Commercially available components were integrated to create a fully programmable custom 4 DOF gantry robot. Individual actuator performance was assessed. A real-time force control algorithm based on trajectory path modification was developed and implemented. Within a reasonable number of programmed path iterations, good control of spinal end body forces and moments, as well as a motion response consistent with previous reported data, were obtained throughout a full physiologic flexion-extension range of motion in the human subaxial cervical spine.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 287
Author(s):  
Byeongjin Kim ◽  
Soohyun Kim

Walking algorithms using push-off improve moving efficiency and disturbance rejection performance. However, the algorithm based on classical contact force control requires an exact model or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on neural networks. The proposed model is adapted to a linear quadratic regulator for position control and balance. The results demonstrate that this neural network-based model can accurately generate force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm significantly improves the accuracy of the force control. One step simulation was used to analyze the robustness of the algorithm. In summary, this walking control algorithm generates a push-off force with precision and enables it to reject disturbance rapidly.


Sign in / Sign up

Export Citation Format

Share Document