A Multiaxis Programmable Robot for the Study of Multibody Spine Biomechanics Using a Real-Time Trajectory Path Modification Force and Displacement Control Strategy

2013 ◽  
Vol 7 (3) ◽  
Author(s):  
Brian P. Kelly ◽  
Denis J. DiAngelo

Robotic testing offers potential advantages over conventional methods including coordinated control of multiple degrees of freedom (DOF) and enhanced fidelity that to date have not been fully utilized. Previous robotic efforts in spine biomechanics have largely been limited to pure displacement control methods and slow quasi-static hybrid control approaches incorporating only one motion segment unit (MSU). The ability to program and selectively direct single or multibody spinal end loads in real-time would represent a significant step forward in the application of robotic testing methods. The current paper describes the development of a custom programmable robotic testing system and application of a novel force control algorithm. A custom robotic testing system with a single 4 DOF serial manipulator was fabricated and assembled. Feedback via position encoders and a six-axis load sensor were established to develop, program, and evaluate control capabilities. A calibration correction scheme was employed to account for changes in load sensor orientation and determination of spinal loads. A real-time force control algorithm was implemented that employed a real-time trajectory path modification feature of the controller. Pilot tests applied 3 Nm pure bending moments to a human cadaveric C2–T1 specimen in flexion and extension to assess the ability to control spinal end loads, and to compare the resulting motion response to previously published data. Stable accurate position control was achieved to within ±2 times the encoder resolution for each axis. Stable control of spinal end body forces was maintained to within a maximum error of 6.3 N in flexion. Sagittal flexibility data recorded from rostral and caudally placed six-axis load sensors were in good agreement, indicating a pure moment loading condition. Individual MSU rotations were consistent with previously reported data from nonrobotic protocols. The force control algorithm required 5–10 path iterations before converging to programmed end body forces within a targeted tolerance. Commercially available components were integrated to create a fully programmable custom 4 DOF gantry robot. Individual actuator performance was assessed. A real-time force control algorithm based on trajectory path modification was developed and implemented. Within a reasonable number of programmed path iterations, good control of spinal end body forces and moments, as well as a motion response consistent with previous reported data, were obtained throughout a full physiologic flexion-extension range of motion in the human subaxial cervical spine.

Author(s):  
Daniel M. Wido ◽  
Denis J. DiAngelo ◽  
Brian P. Kelly

A standard biomechanical testing protocol for evaluation of the sub-axial cervical spine is the application of pure bending moments to the free end of the spine (with opposing end fixed) and measurement of its motion response. The pure moment protocol is often used to compare spinal fusion instrumentation and has also been used to evaluate non-fusion instrumentation (e.g. disc arthroplasty devices) [1,2]. A variety of different testing systems have been employed to implement pure moment application. In cases where the loading is applied quasi-statically using a series of weights and pulleys the spine may relax between intermittent loading phases and/or unintended loading may be applied causing experimental artifact. Our objective was to use an existing programmable robotic testing platform (Spine Robot) to develop a novel real time force control strategy to simulate pure moment loading under precisely controlled continuous movement conditions. This would serve to advance robotic testing capabilities with an end goal to simulate different protocols in the same platform, and to potentially minimize fixturing and quasi-static artifacts.


2013 ◽  
Vol 427-429 ◽  
pp. 995-998
Author(s):  
Xian Lun Wang ◽  
Hua Jie Wang ◽  
Yu Xia Cui

Robot soccer games are important activities for the research of the system design and intelligent control, but the actual implementation process is often limited to the actual quality and quantity of equipment. A testing method based on virtual prototype software is proposed for the single robot in soccer games on the basis of theoretical analysis of the robot soccer system. A real-time interaction method is realized between the control algorithm and system model. According to the position of the ball and robot fed back from the model, the control program can plan appropriate trajectory and sends command to the left and right wheel, which realizes the real-time tracking of the ball. The simulation and actual combating results show that the method can be used for the simulation of the actual robot soccer games and the optimization of the control algorithm.


Author(s):  
Mohamed Alkoheji ◽  
Hadi El-Daou ◽  
Jillian Lee ◽  
Adrian Carlos ◽  
Livio Di Mascio ◽  
...  

Abstract Purpose Persistent acromioclavicular joint (ACJ) instability following high grade injuries causes significant symptoms. The importance of horizontal plane stability is increasingly recognised. There is little evidence of the ability of current implant methods to restore native ACJ stability in the vertical and horizontal planes. The purpose of this work was to measure the ability of three implant reconstructions to restore native ACJ stability. Methods Three groups of nine fresh-frozen shoulders each were mounted into a robotic testing system. The scapula was stationary and the robot displaced the clavicle to measure native anterior, posterior, superior and inferior (A, P, S, I) stability at 50 N force. The ACJ capsule, conoid and trapezoid ligaments were transected and the ACJ was reconstructed using one of three commercially available systems. Two systems (tape loop + screw and tape loop + button) wrapped a tape around the clavicle and coracoid, the third system (sutures + buttons) passed directly through tunnels in the clavicle and coracoid. The stabilities were remeasured. The data for A, P, S, I stability and ranges of A–P and S–I stability were analyzed by ANOVA and repeated-measures Student t tests with Bonferroni correction, to contrast each reconstruction stability versus the native ACJ data for that set of nine specimens, and examined contrasts among the reconstructions. Results All three reconstructions restored the range of A–P stability to that of the native ACJ. However, the coracoid loop devices shifted the clavicle anteriorly. For S–I stability, only the sutures + buttons reconstruction did not differ significantly from native ligament restraint. Conclusions Only the sutures + buttons reconstruction, that passed directly through tunnels in the clavicle and coracoid, restored all stability measures (A, P, S, I) to the native values, while the tape implants wrapped around the bones anteriorised the clavicle. These findings show differing abilities among reconstructions to restore native stability in horizontal and vertical planes. (300 words)


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 287
Author(s):  
Byeongjin Kim ◽  
Soohyun Kim

Walking algorithms using push-off improve moving efficiency and disturbance rejection performance. However, the algorithm based on classical contact force control requires an exact model or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on neural networks. The proposed model is adapted to a linear quadratic regulator for position control and balance. The results demonstrate that this neural network-based model can accurately generate force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm significantly improves the accuracy of the force control. One step simulation was used to analyze the robustness of the algorithm. In summary, this walking control algorithm generates a push-off force with precision and enables it to reject disturbance rapidly.


2013 ◽  
Vol 718-720 ◽  
pp. 1740-1745
Author(s):  
Tulu Muluneh Mekonnen ◽  
De Ning Jiang ◽  
Yong Xin Feng

Vehicle collision sensor system and reporting accident to police is an electronic device installed in a vehicle to inform police man in case of accident to track the vehicles location. This system works using pressure sensor, GPS and GSM technology. These technology embedded together to sense the vehicle collision and indicate the position of the vehicle or locate the place of accident in order to solve the problem immediately (as soon as possible).For doing so AT89S52 microcontroller is interfaced serially to a GSM modem, GPS receiver, and pressure sensor. A GSM modem is used to send the position (Latitude and Longitude) of the vehicle, the plate of the vehicle and the SMS text from the accident place. The GPS modem will continuously give the data (longitude and latitude) and Load sensor senses the collision of the vehicle against obstacles and input to microcontroller. As load sensor senses the collision, the GSM start to send the plate of the vehicle, text message and the position of the vehicle in terms of latitude and longitude in real time.


Sign in / Sign up

Export Citation Format

Share Document