scholarly journals Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models

ACTA IMEKO ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Viktor Witkovsky

<p><span>Measurement uncertainty analysis based on combining the state-of-knowledge distributions requires evaluation of the probability density function (PDF), the cumulative distribution function (CDF), and/or the quantile function (QF) of a random variable reasonably associated with the measurand. This can be derived from the characteristic function (CF), which is defined as a Fourier transform of its probability distribution function. Working with CFs provides an alternative and frequently much simpler route than working directly with PDFs and/or CDFs. In particular, derivation of the CF of a weighted sum of independent random variables is a simple and trivial task. However, the analytical derivation of the PDF and/or CDF by using the inverse Fourier transform is available only in special cases. Thus, in most practical situations, a numerical derivation of the PDF/CDF from the CF is an indispensable tool. In metrological applications, such approach can be used to form the probability distribution for the output quantity of a measurement model of additive, linear or generalized linear form. In this paper we propose new original algorithmic implementations of methods for numerical inversion of the characteristic function which are especially suitable for typical metrological applications. The suggested numerical approaches are based on the Gil-Pelaez inverse formulae and on using the approximation by discrete Fourier transform and the fast Fourier transform (FFT) algorithm for computing PDF/CDF of the univariate continuous random variables. As illustrated here, for typical metrological applications based on linear measurement models the suggested methods are an efficient alternative to the standard Monte Carlo methods.</span></p>

Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


2017 ◽  
Vol 20 (5) ◽  
pp. 939-951
Author(s):  
Amal Almarwani ◽  
Bashair Aljohani ◽  
Rasha Almutairi ◽  
Nada Albalawi ◽  
Alya O. Al Mutairi

2018 ◽  
Vol 47 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Jalal Chachi

In this paper, rst a new notion of fuzzy random variables is introduced. Then, usingclassical techniques in Probability Theory, some aspects and results associated to a randomvariable (including expectation, variance, covariance, correlation coecient, etc.) will beextended to this new environment. Furthermore, within this framework, we can use thetools of general Probability Theory to dene fuzzy cumulative distribution function of afuzzy random variable.


Author(s):  
Steven J. Miller

This chapter continues the development of the theory of Benford's law. It uses Fourier analysis (in particular, Poisson Summation) to prove many systems either satisfy or almost satisfy the Fundamental Equivalence, and hence either obey Benford's law, or are well approximated by it. Examples range from geometric Brownian motions to random matrix theory to products and chains of random variables to special distributions. The chapter furthermore develops the notion of a Benford-good system. Unfortunately one of the conditions here concerns the cancelation in sums of translated errors related to the cumulative distribution function, and proving the required cancelation often requires techniques specific to the system of interest.


Author(s):  
Robert J Marks II

In this Chapter, we present application of Fourier analysis to probability, random variables and stochastic processes [1089, 1097, 1387, 1329]. Arandom variable, X, is the assignment of a number to the outcome of a random experiment. We can, for example, flip a coin and assign an outcome of a heads as X = 1 and a tails X = 0. Often the number is equated to the numerical outcome of the experiment, such as the number of dots on the face of a rolled die or the measurement of a voltage in a noisy circuit. The cumulative distribution function is defined by FX(x) = Pr[X ≤ x]. (4.1) The probability density function is the derivative fX(x) = d /dxFX(x). Our treatment of random variables focuses on use of Fourier analysis. Due to this viewpoint, the development we use is unconventional and begins immediately in the next section with discussion of properties of the probability density function.


1993 ◽  
Vol 16 (1) ◽  
pp. 155-164
Author(s):  
Piotor Mikusiński ◽  
Morgan Phillips ◽  
Howard Sherwood ◽  
Michael D. Taylor

LetF1,…,FNbe1-dimensional probability distribution functions andCbe anN-copula. Define anN-dimensional probability distribution functionGbyG(x1,…,xN)=C(F1(x1),…,FN(xN)). Letν, be the probability measure induced onℝNbyGandμbe the probability measure induced on[0,1]NbyC. We construct a certain transformationΦof subsets ofℝNto subsets of[0,1]Nwhich we call the Fréchet transform and prove that it is measure-preserving. It is intended that this transform be used as a tool to study the types of dependence which can exist between pairs orN-tuples of random variables, but no applications are presented in this paper.


Author(s):  
Olesya Martyniuk ◽  
Stepan Popina ◽  
Serhii Martyniuk

Introduction. Mathematical modeling of economic processes is necessary for the unambiguous formulation and solution of the problem. In the economic sphere this is the most important aspect of the activity of any enterprise, for which economic-mathematical modeling is the tool that allows to make adequate decisions. However, economic indicators that are factors of a model are usually random variables. An economic-mathematical model is proposed for calculating the probability distribution function of the result of economic activity on the basis of the known dependence of this result on factors influencing it and density of probability distribution of these factors. Methods. The formula was used to calculate the random variable probability distribution function, which is a function of other independent random variables. The method of estimation of basic numerical characteristics of the investigated functions of random variables is proposed: mathematical expectation that in the probabilistic sense is the average value of the result of functioning of the economic structure, as well as its variance. The upper bound of the variation of the effective feature is indicated. Results. The cases of linear and power functions of two independent variables are investigated. Different cases of two-dimensional domain of possible values of indicators, which are continuous random variables, are considered. The application of research results to production functions is considered. Examples of estimating the probability distribution function of a random variable are offered. Conclusions. The research results allow in the probabilistic sense to estimate the result of the economic structure activity on the basis of the probabilistic distributions of the values of the dependent variables. The prospect of further research is to apply indirect control over economic performance based on economic and mathematical modeling.


Sign in / Sign up

Export Citation Format

Share Document