New Quadrature-Based Approximations for the Characteristic Function and the Distribution Function of Sums of Lognormal Random Variables

2010 ◽  
Vol 59 (7) ◽  
pp. 3364-3372 ◽  
Author(s):  
Ashraf S. Hasan Mahmoud
ACTA IMEKO ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Viktor Witkovsky

<p><span>Measurement uncertainty analysis based on combining the state-of-knowledge distributions requires evaluation of the probability density function (PDF), the cumulative distribution function (CDF), and/or the quantile function (QF) of a random variable reasonably associated with the measurand. This can be derived from the characteristic function (CF), which is defined as a Fourier transform of its probability distribution function. Working with CFs provides an alternative and frequently much simpler route than working directly with PDFs and/or CDFs. In particular, derivation of the CF of a weighted sum of independent random variables is a simple and trivial task. However, the analytical derivation of the PDF and/or CDF by using the inverse Fourier transform is available only in special cases. Thus, in most practical situations, a numerical derivation of the PDF/CDF from the CF is an indispensable tool. In metrological applications, such approach can be used to form the probability distribution for the output quantity of a measurement model of additive, linear or generalized linear form. In this paper we propose new original algorithmic implementations of methods for numerical inversion of the characteristic function which are especially suitable for typical metrological applications. The suggested numerical approaches are based on the Gil-Pelaez inverse formulae and on using the approximation by discrete Fourier transform and the fast Fourier transform (FFT) algorithm for computing PDF/CDF of the univariate continuous random variables. As illustrated here, for typical metrological applications based on linear measurement models the suggested methods are an efficient alternative to the standard Monte Carlo methods.</span></p>


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


1987 ◽  
Vol 102 (2) ◽  
pp. 329-349 ◽  
Author(s):  
Philip S. Griffin ◽  
William E. Pruitt

Let X, X1, X2,… be a sequence of non-degenerate i.i.d. random variables with common distribution function F. For 1 ≤ j ≤ n, let mn(j) be the number of Xi satisfying either |Xi| > |Xj|, 1 ≤ i ≤ n, or |Xi| = |Xj|, 1 ≤ i ≤ j, and let (r)Xn = Xj if mn(j) = r. Thus (r)Xn is the rth largest random variable in absolute value from amongst X1, …, Xn with ties being broken according to the order in which the random variables occur. Set (r)Sn = (r+1)Xn + … + (n)Xn and write Sn for (0)Sn. We will refer to (r)Sn as a trimmed sum.


2017 ◽  
Vol 20 (5) ◽  
pp. 939-951
Author(s):  
Amal Almarwani ◽  
Bashair Aljohani ◽  
Rasha Almutairi ◽  
Nada Albalawi ◽  
Alya O. Al Mutairi

2011 ◽  
Vol 2011 ◽  
pp. 1-13
Author(s):  
Fa-mei Zheng

Let be a sequence of independent and identically distributed positive random variables with a continuous distribution function , and has a medium tail. Denote and , where , , and is a fixed constant. Under some suitable conditions, we show that , as , where is the trimmed sum and is a standard Wiener process.


2018 ◽  
Vol 47 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Jalal Chachi

In this paper, rst a new notion of fuzzy random variables is introduced. Then, usingclassical techniques in Probability Theory, some aspects and results associated to a randomvariable (including expectation, variance, covariance, correlation coecient, etc.) will beextended to this new environment. Furthermore, within this framework, we can use thetools of general Probability Theory to dene fuzzy cumulative distribution function of afuzzy random variable.


Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 5931-5947
Author(s):  
Hatami Mojtaba ◽  
Alamatsaz Hossein

In this paper, we propose a new transformation of circular random variables based on circular distribution functions, which we shall call inverse distribution function (id f ) transformation. We show that M?bius transformation is a special case of our id f transformation. Very general results are provided for the properties of the proposed family of id f transformations, including their trigonometric moments, maximum entropy, random variate generation, finite mixture and modality properties. In particular, we shall focus our attention on a subfamily of the general family when id f transformation is based on the cardioid circular distribution function. Modality and shape properties are investigated for this subfamily. In addition, we obtain further statistical properties for the resulting distribution by applying the id f transformation to a random variable following a von Mises distribution. In fact, we shall introduce the Cardioid-von Mises (CvM) distribution and estimate its parameters by the maximum likelihood method. Finally, an application of CvM family and its inferential methods are illustrated using a real data set containing times of gun crimes in Pittsburgh, Pennsylvania.


1993 ◽  
Vol 30 (4) ◽  
pp. 979-984 ◽  
Author(s):  
Eui Yong Lee ◽  
Jiyeon Lee

A Markovian stochastic model for a system subject to random shocks is introduced. It is assumed that the shock arriving according to a Poisson process decreases the state of the system by a random amount. It is further assumed that the system is repaired by a repairman arriving according to another Poisson process if the state when he arrives is below a threshold α. Explicit expressions are deduced for the characteristic function of the distribution function of X(t), the state of the system at time t, and for the distribution function of X(t), if . The stationary case is also discussed.


Sign in / Sign up

Export Citation Format

Share Document