scholarly journals Signal and zero padding to improve parameters estimations of sinusoidal signals in the frequency domain

ACTA IMEKO ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 47
Author(s):  
Dusan Agrez ◽  
Damir Ilic ◽  
Janko Drnovsek

<p class="Abstract"><span lang="EN-US">This paper presents the procedure to improve the estimation of the basic sinusoidal signal parameters (frequency, amplitude, and phase, respectively)</span><span lang="EN-US"> in the case of signal sampling by averaging in the aperture time. Prior to estimation in the frequency domain by the interpolated DFT algorithms the sampled signal is padded with the signal average values in the aperture times and zeroes in the rest of the sampling interval. We can increase padding points and a number of the signal cycles in the whole measurement interval and with this nearing the errors to the level as with estimation of the signal without average sampling even the sampling Nyquist condition is not fulfill.</span></p>

PIERS Online ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 106-110
Author(s):  
Shaogang Wang ◽  
Xinpu Guan ◽  
Dangwei Wang ◽  
Xingyi Ma ◽  
Yi Su

Author(s):  
Л.С. Терехов ◽  
А.А. Лаврухин

Указывается, что известные методы измерений исходного сигнала приводят к погрешностям, если ширина измерительных интервалов пошагово не адаптируется к меняющимся параметрам сигнала. Использован новый подход к измерению, раскрывающий единую физическую основу измерения и инструментального вычисления. Алгоритм, следствие указанного подхода, предназначен для получения дискретной последовательности отсчетов сигнала, соответствующих локально определяемым интервалам усреднения. Последовательность получаемых интервалов усреднения приближается к оптимальной и обеспечивает при измерении или решении вычислительной задачи уменьшение погрешности изменяющейся величины. Приведены результаты моделирования на трёх массивах отсчётов с фиксированными и адаптируемыми интервалами усреднения. It is indicated that the known methods for measuring some initial signal lead to errors if the width of the measuring intervals does not step by step adapt to changing signal parameters. A new approach to measurement is used, revealing a unified physical basis for measurement and instrumental computation. A new algorithm as a consequence of this approach is designed to obtain a sequence of discrete samples that matched to locally determined averaging intervals. Resulting sequence of averaging intervals ensures a decrease in the measurement or computing error. The results of calculations on three arrays of samples are presented with fixed and adaptable averaging intervals.


Geophysics ◽  
1988 ◽  
Vol 53 (12) ◽  
pp. 1512-1519 ◽  
Author(s):  
James N. Lange ◽  
H. A. Almoghrabi

A forward modeling technique using Ricker wavelets demonstrates the need for a multiparameter approach in lithology determination using reflections from thin layers. The combination of time‐ and frequency‐domain analyses leads to a set of algorithms which define pore fluid and lithology from wavelet characteristics. The dispersive behavior of the thin layer varies considerably with the environment surrounding the layer, resulting in characteristic frequency‐domain behavior. With a limited prior knowledge of the formation environment, the pore fluid type can be determined using mode‐converted waves in the frequency domain.


Author(s):  
Mohamad Javad Anahid ◽  
Hoda Heydarnia ◽  
Seyed Ali Niknam ◽  
Hedayeh Mehmanparast

It is known that adequate knowledge of the sensitivity of acoustic emission signal parameters to various experimental parameters is indispensable. According to the review of the literature, a lack of knowledge was noticeable concerning the behavior of acoustic emission parameters under a broad range of machining parameters. This becomes more visible in milling operations that include sophisticated chip formation morphology and significant interaction effects and directional pressures and forces. To remedy the aforementioned lack of knowledge, the effect of the variation of cutting parameters on the time and frequency features of acoustic emission signals, extracted and computed from the milling operation, needs to be investigated in a wide aspect. The objective of this study is to investigate the effects of cutting parameters including the feed rate, cutting speed, depth of cut, material properties, as well as cutting tool coating/insert nose radius on computed acoustic emission signals featured in the frequency domain. Similar studies on time-domain signal features were already conducted. To conduct appropriate signal processing and feature extraction, a signal segmentation and processing approach is proposed based on dividing the recorded acoustic emission signals into three sections with specific signal durations associated with cutting tool movement within the work part. To define the sensitive acoustic emission parameters to the variation of cutting parameters, advanced signal processing and statistical approaches were used. Despite the time features of acoustic emission signals, frequency domain acoustic emission parameters seem to be insensitive to the variation of cutting parameters. Moreover, cutting factors governing the effectiveness of acoustic emission signal parameters are hinted. Among these, the cutting speed and feed rate seem to have the most noticeable effects on the variation of time–frequency domain acoustic emission signal information, respectively. The outcomes of this work, along with recently completed works in the time domain, can be integrated into advanced classification and artificial intelligence approaches for numerous applications, including real-time machining process monitoring.


2010 ◽  
Vol 17 (5) ◽  
pp. 461-464 ◽  
Author(s):  
Y. Pantazis ◽  
O. Rosec ◽  
Y. Stylianou

2017 ◽  
Vol 78 (3) ◽  
pp. 389-396 ◽  
Author(s):  
J. Wang ◽  
P. A. Gritsenko ◽  
S. V. Aranovskiy ◽  
A. A. Bobtsov ◽  
A. A. Pyrkin

Sign in / Sign up

Export Citation Format

Share Document