scholarly journals A layered IoT-based architecture for a distributed structural health monitoring system System

ACTA IMEKO ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 45 ◽  
Author(s):  
Francesco Lamonaca ◽  
Carmelo Scuro ◽  
Domenico Grimaldi ◽  
Renato Sante Olivito ◽  
Paolo Francesco Sciammarella ◽  
...  

<p class="Abstract"><span lang="EN-US">Structural health monitoring (SHM) is responsible for identifying techniques and for prototyping systems performing a state diagnosis of structures. Its aim is to prevent sudden civil infrastructure failure as a result of several invisible sources of damage. Since structural damage is often caused by ground phenomena involving circumscribed geographical areas, it is useful to extend SHM systems to allow for the exchange of information among nearby buildings and then to increase the timeliness of the alerts. To this end, in this article, an SHM based on the IoT paradigm is proposed (SHM-IoT). SHM-IoT carries out both localised monitoring on a single building, and it uses information collected by several sensors correlated in time, aiming to identify potentially dangerous damage. It also performs a wider monitoring<em> </em>on a group of buildings in order to alert a larger number of people. SHM-IoT also sends a remote notification, which is finalised in order to alert the authorities and rescuers about the status of each monitored building. In this context, synchronisation problems arise because the information collected by each sensor of the SHM-IoT needs to be correlated in time in order to be used for damage evaluation and alert generation. In this paper, the hardware and software architectures of the proposed SHM-IoT are presented together with the synchronisation requirements and the methods of satisfying them. Experiments are undertaken to validate the SHM-IoT in real scenarios.</span></p>

2018 ◽  
Vol 22 (7) ◽  
pp. 1579-1590 ◽  
Author(s):  
Hongnan Li ◽  
Chaolin Yuan ◽  
Liang Ren ◽  
Tao Jiang

The roof of Dalian gymnasium was designed in the form of suspen-dome structure. A structural health–monitoring system has been developed for the roof structure to guarantee the safety condition during construction process as well as in future service. In this article, a monitoring scheme was proposed in detail according to the mechanical characteristics of the roof structure. Fiber Bragg grating sensors, inclinometers, and accelerometers were applied to measure necessary structural information. In order to interrogate different types of sensors, a novel data acquisition device of the structural health–monitoring system was also introduced and has achieved multitudinous physical variable synchronization acquisition. By analyzing the data obtained during the construction and normal operation of the gymnasium, the structural health condition was evaluated and the structural damage could subsequently be located.


2019 ◽  
Vol 19 (3) ◽  
pp. 661-692 ◽  
Author(s):  
Demi Ai ◽  
Chengxing Lin ◽  
Hui Luo ◽  
Hongping Zhu

Concrete structures in service are often subjected to environmental/operational temperature effects, which change their inherent properties and also inflict a challenge to their extrinsic monitoring systems. Recently, piezoelectric lead zirconate titanate (PZT)-based electromechanical admittance technique has been increasingly growing into an effective tool for concrete structural health monitoring; however, uncertainty in the changes of monitoring signals induced by temperature impact on concrete/PZT sensor would inevitably cause interference to structural damage detection, which adversely hinder its application from laboratory to engineering practice. This article, aiming at exploring the temperature effect on the electromechanical admittance–based concrete damage evaluation, primarily covered a series of theoretical/numerical analysis with rigorously experimental verifications. Three aspects of comparative studies were performed in theoretical/numerical analysis: (1) thermal-dependent parameters were inclusively evaluated in contribution to the electromechanical admittance characteristics via PZT-structure interaction models; (2) three-dimensional finite element analysis in multi-physics coupled field was employed to qualitatively assess the singular temperature effect on the electromechanical admittance behaviors of free-vibrated PZT, surface-bonded PZT/inside-embedded PZT coupled healthy concrete cubes; and (3) depending on the modeling of surface-bonded PZT-/inside-embedded PZT-cracked concrete cube, thermal effect on damage evaluation was addressed via quantification on the electromechanical admittance variations. In the experimental study, rigorous validation tests were carried out on a group of lab-scale concrete cubes, where surface-bonded PZT/inside-embedded PZT transducers were simultaneously employed for electromechanical admittance monitoring in view of thermal difference between concrete surface and its inner part. Correlation coefficient deviation value-based effective frequency shifts algorithm was also employed to compensate the temperature effect. Moreover, temperature effect was further testified on the monitoring of a full-scale shield-tunnel segment structure. Experimental results indicated that temperature triggered different behaviors of electromechanical admittance signatures for surface-bonded PZT/inside-embedded PZT transducers and contaminated the electromechanical admittance responses for damage detection. Structural damage severity level can be disadvantageously amplified by temperature increment even if under the same damage scenarios.


2014 ◽  
Vol 530-531 ◽  
pp. 62-65
Author(s):  
Yu Long Zhang ◽  
Wei Fang Zhang ◽  
Ai Ai Zhang

Sensor is the core component of structural health monitoring system, which can collect the data of structural damage. The structural damage state can be gained after further processing. Aircraft serves in rigorous environment, and existing sensors cant meet the demand of its structural damage monitoring for inherent defect. A preparation method of partial poling piezoelectric film sensor was proposed in the paper, which can be used for structural damage monitoring of aircraft in combination with lamb wave.


2019 ◽  
Vol 19 (1) ◽  
pp. 215-239 ◽  
Author(s):  
Danny Smyl ◽  
Sven Bossuyt ◽  
Waqas Ahmad ◽  
Anton Vavilov ◽  
Dong Liu

The ability to reliably detect damage and intercept deleterious processes, such as cracking, corrosion, and plasticity are central themes in structural health monitoring. The importance of detecting such processes early on lies in the realization that delays may decrease safety, increase long-term repair/retrofit costs, and degrade the overall user experience of civil infrastructure. Since real structures exist in more than one dimension, the detection of distributed damage processes also generally requires input data from more than one dimension. Often, however, interpretation of distributed data—alone—offers insufficient information. For this reason, engineers and researchers have become interested in stationary inverse methods, for example, utilizing distributed data from stationary or quasi-stationary measurements for tomographic imaging structures. Presently, however, there are barriers in implementing stationary inverse methods at the scale of built civil structures. Of these barriers, a lack of available straightforward inverse algorithms is at the forefront. To address this, we provide 38 least-squares frameworks encompassing single-state, two-state, and joint tomographic imaging of structural damage. These regimes are then applied to two emerging structural health monitoring imaging modalities: Electrical Resistance Tomography and Quasi-Static Elasticity Imaging. The feasibility of the regimes are then demonstrated using simulated and experimental data.


Sign in / Sign up

Export Citation Format

Share Document