scholarly journals Preparation of Class Y Immunoglobulins that Neutralize the Marburg Virus

Author(s):  
O. A. Polezhaeva ◽  
A. V. Zybkina ◽  
A. V. Zaikovskaya ◽  
O. V. P’yankov ◽  
S. A. P’yankov ◽  
...  

The aim was to study the possibility of inducing Marburg-neutralizing chicken antibodies (MARV) using various immunogens.Materials and methods. Recombinant vaccinia virus expressing the surface glycoprotein (GP) transgene MARV of Musoke strain and pseudovirus particles exhibiting GP of three strains of MARV – Popp, Musoke and DRC2000 based on lentivirus and recombinant strain of vesicular stomatitis virus (VSV) were used as immunogens. Two groups of birds were involved in the study. Chickens were immunized 9 times: first time they were injected with the recombinant vaccinia virus, and then 8 times – with pseudovirus particles (based on lentivirus and a recombinant strain of the vesicular stomatitis virus). The accumulation of specific antibodies was evaluated by enzyme-linked immunosorbent assay (ELISA). We used recombinant VSV exhibiting GP MARV, and natural MARV strain Popp for the analysis of accumulation of neutralizing antibodies.Results and discussion. We have developed an effective immunization schedule for chickens with three recombinant constructs presenting GP MARV, which results in the induction of chicken IgY antibodies against Marburg virus with a titer in ELISA from 1:100 to 1:1 million. The obtained IgY neutralize MARV pseudoviruses (Popp, DRC2000, Musoke) at a dilution of 1/256 to 1/1024 and the natural MARV virus of the Popp strain at a dilution of 1/8. More stable results were demonstrated by immunization using Freund’s incomplete adjuvant. 

Author(s):  
A. Semenova ◽  
G. Sivolobova ◽  
A. Grazhdantseva ◽  
S. P’yankov ◽  
O. Taranov ◽  
...  

Based on the highly attenuated vaccinia virus MVA strain, a recombinant variant MVA-GP-VP40-MARV was constructed, which expresses a cassette of the GP and VP-40 genes of the Marburg virus with the formation of immunogenic virus-like particles and protects Guinea pigs from a lethal infection by the Marburg virus.


2005 ◽  
Vol 49 (4) ◽  
pp. 1381-1390 ◽  
Author(s):  
Victoria Chung ◽  
Anthony R. Carroll ◽  
Norman M. Gray ◽  
Nigel R. Parry ◽  
Pia A. Thommes ◽  
...  

ABSTRACT A recombinant vaccinia virus, expressing the NS3-to-NS5 region of the N clone of hepatitis C virus (HCV), was generated and utilized both in a gel-based assay and in an enzyme-linked immunosorbent assay (ELISA) to evaluate the pyrrolidine-5,5-trans-lactams, a series of inhibitors of the HCV NS3/4A protease. The absolute levels of processed, mature HCV nonstructural proteins in this system were found to decrease in the presence of the trans-lactams. Monitoring of this reduction enabled end points and 50% inhibitory concentrations to be calculated in order to rank the active compounds according to potency. These compounds had no effect on the transcription or translation of the NS3-5 polyprotein at concentrations shown to inhibit NS3/4A protease, and they were shown to be specific inhibitors of this protease. The ELISA, originally developed using the vaccinia virus expression system, was modified to utilize Huh-7 cells containing an HCV replicon. Results with this assay correlated well with those obtained with the recombinant vaccinia virus assays. These results demonstrate the utility of these assays for the characterization of NS3/4A protease inhibitors. In addition, inhibitors of other viral targets, such as polymerase and helicase, can be evaluated in the context of the replicon ELISA.


1991 ◽  
Vol 7 (10) ◽  
pp. 791-798 ◽  
Author(s):  
JAMES KLANIECKI ◽  
TRACY DYKERS ◽  
BRUCE TRAVIS ◽  
ROBERT SCHMITT ◽  
MORGAN WAIN ◽  
...  

Microbiology ◽  
2000 ◽  
Vol 81 (5) ◽  
pp. 1273-1281 ◽  
Author(s):  
Nora López ◽  
Luis Scolaro ◽  
Carlos Rossi ◽  
Rodrigo Jácamo ◽  
Nélida Candurra ◽  
...  

Tacaribe virus (TACV) is an arenavirus that is genetically and antigenically closely related to Junin virus (JUNV), the aetiological agent of Argentine haemorrhagic fever (AHF). It is well established that TACV protects experimental animals fully against an otherwise lethal challenge with JUNV. To gain information on the nature of the antigens involved in cross-protection, recombinant vaccinia viruses were constructed that express the glycoprotein precursor (VV–GTac) or the nucleocapsid protein (VV–N) of TACV. TACV proteins expressed by vaccinia virus were indistinguishable from authentic virus proteins by gel electrophoresis. Guinea pigs inoculated with VV–GTac or VV–N elicited antibodies that immunoprecipitated authentic TACV proteins. Antibodies generated by VV–GTac neutralized TACV infectivity. Levels of antibodies after priming and boosting with recombinant vaccinia virus were comparable to those elicited in TACV infection. To evaluate the ability of recombinant vaccinia virus to protect against experimental AHF, guinea pigs were challenged with lethal doses of JUNV. Fifty per cent of the animals immunized with VV–GTac survived, whereas all animals inoculated with VV–N or vaccinia virus died. Having established that the heterologous glycoprotein protects against JUNV challenge, a recombinant vaccinia virus was constructed that expresses JUNV glycoprotein precursor (VV–GJun). The size and reactivity to monoclonal antibodies of the vaccinia virus-expressed and authentic JUNV glycoproteins were indistinguishable. Seventy-two per cent of the animals inoculated with two doses of VV–GJun survived lethal JUNV challenge. Protection with either VV–GJun or VV–GTac occurred in the presence of low or undetectable levels of neutralizing antibodies to JUNV.


Sign in / Sign up

Export Citation Format

Share Document