Consensus of Heterogeneous Multi-Agent Systems with Intermittent Communication

2017 ◽  
Vol 5 (4) ◽  
pp. 328-342
Author(s):  
Lü Xu ◽  
Shuanghe Meng ◽  
Liang Chen

AbstractThis paper studies consensus of a class of heterogeneous multi-agent systems composed of first-order and second-order agents with intermittent communication. For leaderless multi-agent systems, we propose a distributed consensus algorithm based on the intermittent information of neighboring agents. Some sufficient conditions are obtained to guarantee the consensus of heterogeneous multi-agent systems in terms of bilinear matrix inequalities (BMIs). Meanwhile, the relationship between communication duration and each control period is sought out. Moreover, the designed algorithm is extended to leader-following multi-agent systems without velocity measurements. Finally, the effectiveness of the main results is illustrated by numerical simulations.

2018 ◽  
Vol 8 (4) ◽  
pp. 293-302 ◽  
Author(s):  
Bin Xu ◽  
Wangli He

Abstract This paper is concerned with cluster consensus of linear multi-agent systems via a distributed event-triggered control scheme. Assume that agents can be split into several clusters and a leader is associated with each cluster. Sufficient conditions are derived to guarantee the realization of cluster consensus by a feasible event-triggered controller if the network topology of each cluster has a directed spanning tree and the couplings within each cluster are sufficiently strong. Further, positive inner-event time intervals are ensured for the proposed event-triggered strategy to avoid Zeno behaviors. Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.


2018 ◽  
Vol 41 (5) ◽  
pp. 1313-1322 ◽  
Author(s):  
Yunlong Zhang ◽  
Guoguang Wen ◽  
Zhaoxia Peng ◽  
Yongguang Yu ◽  
Ahmed Rahmani

In this paper, group multiple lags consensus of fractional-order leader-following multi-agent systems with nonlinear dynamics are investigated, in which two kinds of lag consensus are considered. One is said to be outergroup lag consensus, which means that different group leaders reach lag consensus. The other one is called innergroup lag consensus, that is to say, the followers will reach lag consensus with their own group leader. Based on Mittag–Leffler stability for fractional-order systems, algebraic graph theory, a class of novel control protocols is designed and the corresponding sufficient conditions are derived to guarantee the achievement of group multiple lags consensus. Furthermore, considering parametric uncertainties, an adaptive control technology is employed to solve the group multiple lags consensus for fractional order multi-agent systems, and the corresponding adaptive control protocols and sufficient conditions are proposed. Finally, numerical simulations are given to demonstrate the effectiveness of the obtained results.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 650
Author(s):  
Ricardo Almeida ◽  
Ewa Girejko ◽  
Snezhana Hristova ◽  
Agnieszka Malinowska

This paper studies the leader-following consensus problem in continuous-time multi-agent networks with communications/updates occurring only at random times. The time between two consecutive controller updates is exponentially distributed. Some sufficient conditions are derived to design the control law that ensures the leader-following consensus is asymptotically reached (in the sense of the expected value of a stochastic process). The numerical examples are worked out to demonstrate the effectiveness of our theoretical results.


2019 ◽  
Vol 42 (7) ◽  
pp. 1323-1333
Author(s):  
Shuang Liang ◽  
Zhongxin Liu ◽  
Zengqiang Chen

In this paper, the leader-following [Formula: see text] consensus problem for discrete-time nonlinear multi-agent systems with delay and parameter uncertainty is investigated, with the objective of designing an output feedback protocol such that the multi-agent system achieves leader-following consensus and has a prescribed [Formula: see text] performance level. By model transforming, the leader-following consensus control problem is converted into robust [Formula: see text] control problem. Based on the Lyapunov function technology and the linear matrix inequality method, some new sufficient conditions are derived to guarantee the consensus of discrete-time nonlinear multi-agent systems. The feedback gain matrix and the optimal [Formula: see text] performance index are obtained in terms of linear matrix inequalities. Finally, numerical examples are provided to illustrate the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document