scholarly journals Rapid Airfield Damage Recovery Next Generation Backfill Technologies Comparison Experiment : Technology Comparison Experiment

2021 ◽  
Author(s):  
Mariely Mejias-Santiago ◽  
Lyan I Garcia ◽  
Lulu Edwards

The Rapid Airfield Damage Recovery (RADR) Next Generation Backfill Technology Comparison Experiment was conducted in July 2017 at the East Campus of the U.S. Army Engineer Research and Development Center (ERDC), located in Vicksburg, MS. The experiment evaluated three different crater backfill technologies to compare their performance and develop a technology trade-off a nalysis. The RADR next generation backfill technologies were compared to the current RADR standard backfill method of flowable fill. Results from this experiment provided useful information on technology rankings and trade-offs. This effort resulted in successful crater backfill solutions that were recommended for further end user evaluation.

2021 ◽  
Author(s):  

Knowledge management is vital to successfully executing research and development programs within the U.S. Army Engineer Research and Development Center (ERDC). Experimental knowledge management initiatives over the years led to discoveries about the best ways to store and access ERDC’s vast knowledge base. This document highlights several of the effective knowledge management tools that evolved from these discoveries, helping you to find and share knowledge!


2021 ◽  
Author(s):  
D. Costley ◽  
Luis De Jesús Díaz, ◽  
Sarah McComas ◽  
Christopher Simpson ◽  
James Johnson ◽  
...  

The U.S. Army Engineer Research and Development Center (ERDC) performed an experiment at a site near Vicksburg, MS, during May 2014. Explosive charges were detonated, and the shock and acoustic waves were detected with pressure and infrasound sensors stationed at various distances from the source, i.e., from 3 m to 14.5 km. One objective of the experiment was to investigate the evolution of the shock wave produced by the explosion to the acoustic wavefront detected several kilometers from the detonation site. Another objective was to compare the effectiveness of different wind filter strategies. Toward this end, several sensors were deployed near each other, approximately 8 km from the site of the explosion. These sensors used different types of wind filters, including the different lengths of porous hoses, a bag of rocks, a foam pillow, and no filter. In addition, seismic and acoustic waves produced by the explosions were recorded with seismometers located at various distances from the source. The suitability of these sensors for measuring low-frequency acoustic waves was investigated.


2021 ◽  
Author(s):  
Michael Ekegren ◽  
Sandra LeGrand

The Geomorphic Oscillation Assessment Tool (GOAT) quantifies terrain roughness as a mechanism to better explain forward arming and refueling point (FARP) suitability for Army aviation. An empirically driven characteristic of FARP consideration, surface roughness is a key discriminator for site utility in complex terrain. GOAT uses a spatial sampling of high-resolution elevation and land cover data to construct data frames, which enable a relational analysis of component and aggregate site suitability. By incorporating multiple criteria from various doctrinal sources, GOAT pro-duces a composite quality assessment of the areal options available to the aviation commander. This report documents and demonstrates version 1.0 of the GOAT algorithms developed by the U.S. Army Engineer Research and Development Center (ERDC). These details will allow users familiar with R to implement it as a stand-alone program or in R Studio.


2012 ◽  
Vol 1 (33) ◽  
pp. 62 ◽  
Author(s):  
Andrea Natalia Raosa ◽  
Barbara Zanuttigh ◽  
Javier Lopez Lara ◽  
Steven Hughes

The purpose of this contribution is the representation of real wave overtopping over sea dikes with the Rans-Vof code (IH-2VOF) developed by the University of Cantabria. More specific objectives are: to identify the real capacity of the IH-2VOF model in the prediction of overflow and to determinate the accuracy of these predictions in order to provide designers with a generally applicable methodology to use the code. The model is validated against experimental tests conducted by Hughes at the U.S. Army Engineer Research and Development Center (ERDC). This analysis shows that the model tends to overestimate wave reflection and better results are obtained by introducing a porous layer around the structure as artificial way to reduce reflected wave energy.


2020 ◽  
Author(s):  
James Dolan

Publications issued October 2019 through September 2020 by the U.S. Army Engineer Research and Development Center (ERDC) are listed. The publications are grouped according to the technical laboratories or technical program for which they were prepared. Procedures for obtaining ERDC reports are included in the Preface.


2021 ◽  
Author(s):  
Julie Kelley ◽  
Joseph Dunbar ◽  
Maureen Corcoran

The purpose of this study is to use historical hydrographic surveys to quantify bathymetric changes in the forebay channel area of ORLSS over the last 56 yr. The results from this comparison support an ongoing geotechnical study led by Mr. Lucas Walshire, U.S. Engineer Research and Development Center (ERDC), for the U.S. Army Corps of Engineers, New Orleans District (USACE MVN).


2021 ◽  
Author(s):  
Lulu Edwards ◽  
Haley Bell ◽  
Marcus Opperman

Research was conducted at the U.S. Army Engineer Research and Development Center (ERDC) in Vicksburg, MS, to identify alternative repair methods and materials for large crater repairs using Rapid Set Concrete Mix®. This report presents the technical evaluation of the field performance of full-depth slab replacement methods conducted using Rapid Set Concrete Mix® over varying strength foundations. The performance of each large crater repair was determined by using a load cart representing one-half of the full gear of a C-17 aircraft. Results indicate that using rapid-setting concrete is a viable material for large crater repairs, and the performance is dependent on surface thickness and base strength.


Sign in / Sign up

Export Citation Format

Share Document