Wettability and Substrate Selection in the Larval Settlement of the Solitary Ascidian Phallusia philippinensis (Phlebobranchia: Ascidiidae)

2020 ◽  
Vol 37 (4) ◽  
pp. 366
Author(s):  
Noburu Sensui ◽  
Euichi Hirose
2019 ◽  
Vol 85 (16) ◽  
Author(s):  
Jian He ◽  
Qi Dai ◽  
Yuxuan Qi ◽  
Pei Su ◽  
Miaoqin Huang ◽  
...  

ABSTRACTMarine bacterial biofilms have long been recognized as potential inducers of larval settlement and metamorphosis in marine invertebrates, but few chemical cues from bacteria have been identified. Here, we show that larval settlement and metamorphosis of an invasive fouling mussel,Mytilopsis sallei, could be induced by biofilms of bacteria isolated from its adult shells and other substrates from the natural environment. One of the strains isolated,Vibrio owensiiMS-9, showed strong inducing activity which was attributed to the release of a mixture of nucleobases including uracil, thymine, xanthine, hypoxanthine, and guanine into seawater. In particular, the synergistic effect of hypoxanthine and guanine was sufficient for the inducing activity ofV. owensiiMS-9. The presence of two or three other nucleobases could enhance, to some extent, the activity of the mixture of hypoxanthine and guanine. Furthermore, we determined that bacteria producing higher concentrations of nucleobases were more likely to induce larval settlement and metamorphosis ofM. salleithan were bacteria producing lower concentrations of nucleobases. The present study demonstrates that bacterial nucleobases play an important role in larval settlement and metamorphosis of marine invertebrates. This provides new insights into our understanding of the role of environmental bacteria in the colonization and aggregation of invasive fouling organisms and of the metabolites used as chemical mediators in cross-kingdom communication within aquatic systems.IMPORTANCEInvasive species are an increasingly serious problem globally. In aquatic ecosystems, invasive dreissenid mussels are well-known ecological and economic pests because they appear to effortlessly invade new environments and foul submerged structures with high-density aggregations. To efficiently control exotic mussel recruitment and colonization, the need to investigate the mechanisms of substrate selection for larval settlement and metamorphosis is apparent. Our work is one of very few to experimentally demonstrate that compounds produced by environmental bacteria play an important role in larval settlement and metamorphosis in marine invertebrates. Additionally, this study demonstrates that bacterial nucleobases can be used as chemical mediators in cross-kingdom communication within aquatic systems, which will enhance our understanding of how microbes induce larval settlement and metamorphosis of dreissenid mussels, and it furthermore may allow the development of new methods for application in antifouling.


2019 ◽  
Vol 99 (06) ◽  
pp. 1393-1397 ◽  
Author(s):  
Euichi Hirose ◽  
Noburu Sensui

AbstractIn some metazoans, the body surface is entirely or partly covered with an array of nipples about 100 nm or less in height. This structure, a nipple array, is sometimes called the moth-eye structure because it serves as an anti-reflection property on the compound eyes of a night moth. The nipple array is supposed to be a multifunctional structure since this structure occurs in various species across different taxa. Here, we hypothesize that the nipple array may prevent the settlement of epibionts that are often a nuisance and potentially cause serious problems for the host. Using a synthetic film that imitates the nipple array, we tested the substrate selection within ascidian larval settlement. The results indicate that the nipple array has anti-fouling properties, since more larvae settled on the flat surface than the nipple array (P < 0.01, paired t-test). The present results demonstrated that the nipple array potentially serves an anti-fouling function on the body surface, which should be important especially for sessile organisms.


Hydrobiologia ◽  
1983 ◽  
Vol 104 (1) ◽  
pp. 317-323 ◽  
Author(s):  
Nancy M. Butler

Sign in / Sign up

Export Citation Format

Share Document