Valleys, Estuaries, and Lagoons: Paleoenvironments and Regressive–Transgressive Architecture of the Upper Cretaceous Straight Cliffs Formation, Utah, U.S.A

2015 ◽  
Vol 85 (10) ◽  
pp. 1166-1196 ◽  
Author(s):  
Brenton M. Chentnik ◽  
Cari L. Johnson ◽  
Julia S. Mulhern ◽  
Lisa Stright

Abstract:  The John Henry Member of the Upper Cretaceous Straight Cliffs Formation preserves deposition of four regressive–transgressive (R-T) cycles in 350 m of strata of the Sevier foredeep in south-central Utah, USA. Each cycle is discussed in detail, with emphasis on the transgressive phases of deposition. Regressive intervals comprise wave-dominated shorefaces and coastal-plain strata, whereas transgressive intervals record tide-influenced coastal-margin and low-energy-bay and lagoonal deposits. One R-T cycle in the lower John Henry Member preserves a compound incised-valley system filled with a complex assemblage of tidal and estuarine facies. In contrast, overlying R-T cycles are not associated with valley formation, but instead preserve sandstone-rich back-barrier platform deposits that transition landward into tidal-creek, tidal-flat, and marsh depositional settings. Excellent outcrop expression permits detailed examination of the complex internal architecture of the compound incised-valley, and demonstrates that: 1) tidal ravinement significantly modified the initial valley shape during transgression, a process not fully recognized in most conceptual models of valley formation and fill; 2) the valley system incised in a basin-axial position (NNE–SSW), subparallel to the thrust front and oblique to the orientation of pre-valley-formation shorefaces, which prograded from west to east. Axial systems are well-known transporters of large volumes of sediment in foreland basins, and yet most incised-valley models imply a direct and oversimplified relationship between up-dip (source area and tectonics) and down-dip (base level) controls; 3) the major subaerial unconformity and bypass surface occurred at a higher (younger) stratigraphic position than previously interpreted, and is herein renamed the lower John Henry Member sequence boundary. The changes in regional correlations necessitated by this discovery have several broader implications for sequence stratigraphic models; 4) finally, correlations down dip along the axial valley system indicate a steep topographic gradient of 0.011, with 47% vertical, compacted expansion of the whole John Henry Member over 14 km from south to the north. This suggests structural control on sediment transport and deposition, with significant lateral variability in accommodation parallel to the fold-thrust belt. This study adds to the growing body of literature documenting the complex nature of transgressive deposits, which will aid in the interpretation, prediction, and management of analogous subsurface reservoirs.

1969 ◽  
Vol 6 (2) ◽  
pp. 317-334 ◽  
Author(s):  
P. N. Byers

The Upper Cretaceous non-marine Whitemud Formation of south-central and southwestern Saskatchewan and southeastern Alberta consists of kaolinitic, metamorphic lithic sands and silts, and kaolinitic clays. The sands and silts are not highly feldspathic as was originally thought. The major constituent is metamorphic lithic grains with minor kaolinitic clay and vermicular kaolin, clear angular quartz, chert, muscovite, and minor volcanic lithic grains and feldspar. The upper part of the Upper Cretaceous Eastend Formation, which conformably underlies the Whitemud Formation, consists of non-marine sands, silts, and clays. Kaolin is very rare. The bulk of the sands are composed of volcanic lithic grains with minor metamorphic lithic grains, clear angular quartz, chert, feldspar, muscovite, and biotite.The contact is characterized by the following changes from the Eastend Formation upward into the Whitemud Formation: an abrupt decrease in volcanic lithic grains and increase in metamorphic lithic grains; the appearance of kaolin and the disappearance of biotite and apatite; a slight increase in clear angular quartz and muscovite and a decrease in feldspar; a general increase in metamorphic heavy minerals; and an increase in the percentage of ilmenite (both as solitary grains and intergrown with magnetite), which is altered to leucoxene.On the basis of mineralogy, the Whitemud Formation is definitely a correlative of the Colgate Member of the Fox Hills Formation in Montana and North Dakota.The upper Eastend and Whitemud Formations were derived from Upper Cretaceous volcanic rocks, Precambrian and Paleozoic metamorphic rocks, and Paleozoic carbonates all situated in Montana. Upper Eastend sediments represent fast mechanical weathering of mountains of freshly extruded volcanic rocks, whereas the Whitemud sediments represent slow chemical weathering and leaching, which predominated once the mountainous volcanic rocks were worn down. This deep chemical weathering altered the volcanic tuffs and flows into kaolinitic clay at the source area; the kaolin of the Whitemud Formation is not derived from the weathering of feldspars at the site of deposition.It is suggested that the Frenchman and Ravenscrag Formations were also derived from Upper Cretaceous and Lower Tertiary volcanic rocks in Montana.


Sign in / Sign up

Export Citation Format

Share Document