FORAMINIFERAL ECOSTRATIGRAPHY OF LATE OLIGOCENE SEQUENCES, SOUTHEASTERN AUSTRALIA: PATTERNS AND INFERRED SEA LEVELS AT THIRD-ORDER AND MILANKOVITCH SCALES

Author(s):  
QIANYU LI ◽  
PETER J. DAVIES ◽  
BRIAN MCGOWRAN ◽  
THERESE VAN DER LINDEN
2015 ◽  
Vol 52 (12) ◽  
pp. 1150-1168 ◽  
Author(s):  
Pierre Jutras ◽  
Jason R. McLeod ◽  
John Utting

The Visean–Serpukhovian transition in Atlantic Canada was marked by a general humidification of the climate as the region drifted towards equatorial latitudes. It also corresponds to a time when ice volume was increasing on Gondwana, which marked the end of Mississippian marine incursions in the region. Glacioeustatic fluctuations of greater magnitude are thought to have increased the response of the regional climate to third-order cyclicity from orbital forcing. In the Cumberland Basin, fluvial grey beds of the lower Serpukhovian Shepody Formation were deposited in sub-humid conditions during highstands, whereas red playa deposits of the same unit were deposited under semi-arid conditions during lowstands. Basin reconstruction suggests that this unit was sourced from the fault-bounded Cobequid and Caledonia highlands and deposited in two separate salt-withdrawal minibasins. This fluvial system was seemingly discharging to the north into the broad lake that deposited the contemporaneous Hastings Formation. A disconformity separates the Shepody Formation from mid-Serpukhovian red beds of the Claremont Formation and is tentatively associated with another increase in ice volume on Gondwana followed by a recrudescence of fault activity and basin subsidence. A prolonged time of aridity, floral crisis, non-deposition, deep weathering and karstification in late Serpukhovian to early Bashkirian times is contemporaneous with abundant glacial deposits in higher latitudes, suggesting that globally low sea levels may have been at play in creating a situation of greater continentality in the study area.


2013 ◽  
Vol 9 (1) ◽  
pp. 583-613
Author(s):  
M. Reuter ◽  
W. E. Piller ◽  
M. Harzhauser ◽  
A. Kroh

Abstract. Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27–24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1) A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3) a deep storm wave base is represented by an Amussiopecten–Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene global warming (~24 Ma).


Author(s):  
Zhifeng Shao

A small electron probe has many applications in many fields and in the case of the STEM, the probe size essentially determines the ultimate resolution. However, there are many difficulties in obtaining a very small probe.Spherical aberration is one of them and all existing probe forming systems have non-zero spherical aberration. The ultimate probe radius is given byδ = 0.43Csl/4ƛ3/4where ƛ is the electron wave length and it is apparent that δ decreases only slowly with decreasing Cs. Scherzer pointed out that the third order aberration coefficient always has the same sign regardless of the field distribution, provided only that the fields have cylindrical symmetry, are independent of time and no space charge is present. To overcome this problem, he proposed a corrector consisting of octupoles and quadrupoles.


1973 ◽  
Vol 16 (2) ◽  
pp. 201-212 ◽  
Author(s):  
Elizabeth Carrow ◽  
Michael Mauldin

As a general index of language development, the recall of first through fourth order approximations to English was examined in four, five, six, and seven year olds and adults. Data suggested that recall improved with age, and increases in approximation to English were accompanied by increases in recall for six and seven year olds and adults. Recall improved for four and five year olds through the third order but declined at the fourth. The latter finding was attributed to deficits in semantic structures and memory processes in four and five year olds. The former finding was interpreted as an index of the development of general linguistic processes.


1997 ◽  
Vol 91 (4) ◽  
pp. 761-767 ◽  
Author(s):  
D. HENDERSON ◽  
S. SOKOŁOWSKI ◽  
R. ZAGORSKI ◽  
A. TROKHYMCHUK

Sign in / Sign up

Export Citation Format

Share Document