TRIASSIC SEA-LEVEL CHANGES: EVIDENCE FROM THE CANADIAN ARCTIC ARCHIPELAGO

1988 ◽  
pp. 249-259 ◽  
Author(s):  
ASHTON F. EMBRY
2020 ◽  
Vol 57 (1) ◽  
pp. 123-132
Author(s):  
John Shaw ◽  
D. Patrick Potter ◽  
Yongsheng Wu

Data from two surveys by multi-beam sonar and two by marine/terrestrial LiDAR are used to evaluate the geomorphology of the seafloor in littoral areas of the Canadian Arctic Channels, near King William Island, Nunavut. Submarine terrains show well-preserved glacial landforms (drumlins, mega-scale glacial lineations, iceberg-turbated terrain, recessional moraines, and glaciofluvial landforms) with only slight modification by modern processes (wave action and sea-ice activity). At Gjoa Haven the seafloor is imprinted by fields of pits 2 m wide and 0.15 m deep. They may result from gas hydrate dissolution triggered by falling relative sea levels. The Arctic Archipelago displays what might be termed inverted terrains: marine terrains, chiefly beach ridge complexes, exist above modern sea level and well-preserved glacial terrains are present below modern sea level. This is the inverse of the submerging regimes of Atlantic Canada, where glacial terrains exist on land, but below sea level they have been effaced and modified by marine processes down to the lowstand depth.


2021 ◽  

The Beaufort Formation records extraordinary details of Arctic environments and amplified temperatures at approximately modern levels of atmospheric CO2. It was deposited during the Neogene on the western side of what is now the Canadian Arctic Archipelago. Meighen Island is a key locality for studying this formation because marine sediments there are interbedded with terrestrial fossiliferous sands. The biostratigraphic succession, fossils from the marine beds, and paleomagnetic data from the Bjaere Bay region of the island suggest two potential ages for the studied exposures: either continuous deposition at ca. 3.0 Ma, or a sequence of deposits at ca. 4.5 Ma and 3.4 Ma. The sediments appear to encompass at least two eustatic highstands of sea level and a particularly warm climate interval of the Pliocene Arctic.


Author(s):  
Zhang Yu ◽  
Chen Chang-Sheng ◽  
Shen Xin-Yi ◽  
Xu Dan-Ya ◽  
Shao Wei-Zeng ◽  
...  

2021 ◽  
Author(s):  
R.W. Barendregt ◽  
J.V. Matthews ◽  
V. Behan-Pelletier ◽  
J. Brigham-Grette ◽  
J.G. Fyles ◽  
...  

ABSTRACT Meighen Island, in the Canadian Arctic Archipelago, is one of the most important localities for study of the late Neogene Beaufort Formation because of the presence of marine sediments interbedded with terrestrial fossiliferous sands. The stratigraphic succession, fossils from the marine beds, correlation with reconstructions of sea level, and paleomagnetic data from the Bjaere Bay region of the island suggest that the Beaufort Formation on Meighen Island was likely deposited either at 3.2–2.9 Ma or during two intervals at ca. 4.5 Ma and 3.4 Ma. The exposed Beaufort Formation on Meighen Island probably encompasses at least one warm interval and eustatic sea-level highstand of the Pliocene. Fossils of plants and arthropods are abundant in the alluvial sands exposed in the Bjaere Bay region. The lower part of the sequence (Unit A), beneath the muddy marine sequence (Unit B), contains plant taxa that have not been seen above the marine beds. Sediments below the marine beds are dominated more by fossils of trees, whereas the organic debris from above marine beds contains many fossils of plants, insects, and mites characteristic of open treeless sites. Regional tree line probably occurred on Meighen Island during deposition of the upper sediments, which implies a mean July climate at least 9 °C warmer than at present. When the marine sediments were deposited, nearshore water temperatures probably did not fall below 0 °C; hence, the Arctic Ocean probably lacked perennial ice cover. This confirms recent modeling experiments exploring the causes of Arctic amplification of temperature that have found the removal of sea ice to be a key factor in resolving previous proxy-model mismatches.


10.1029/ft354 ◽  
1989 ◽  
Author(s):  
John M. Dennison ◽  
Edwin J. Anderson ◽  
Jack D. Beuthin ◽  
Edward Cotter ◽  
Richard J. Diecchio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document