scholarly journals Soccer Players Detection Using GDLS Optimization and Spatial Bitwise Operation Filter

2019 ◽  
Vol 2 (1) ◽  
pp. 49-58
Author(s):  
Adhi Dharma Wibawa ◽  
Atyanta Nika Rumaksari

Advancement computer vision technology in order to help coach creates strategy has been affecting the sport industry evolving very fast. Players movement patterns and other important behavioral activities regarding the tactics during playing the game are the most important data obtained in applying computer vision in Sport Industry. The basic technique for extracting those information during the game is player detection. Three fundamental challenges of computer vision in detecting objects are random object’s movement, noise and shadow. Background subtraction is an object’s detection method that used widely for separating moving object as foreground and non moving object as background. This paper proposed a method for removing shadow and unwanted noise by improving traditional background subtraction technique. First, we employed GDLS algorithm to optimize background-foreground separation. Then, we did filter shadows and crumbs-like object pixels by applying digital spatial filter which is created from implementation of digital arithmetic algorithm (bitwise operation). Finally, our experimental result demonstrated that our algorithm outperform conventional background subtraction algorithms. The experiments result proposed method has obtained 80.5% of F1-score with average 20 objects were detected out of 24 objects.

Author(s):  
Tannistha Pal

Introduction: Moving object detection from videos is among the most difficult task in different areas of computer vision applications. Among the traditional object detection methods, researchers conclude that Background Subtraction method carried out better in aspects of execution time and output quality. Mehtod: Visual background extractor is a renowned algorithm in Background Subtraction method for detecting moving object in various applications. In the recent years, lots of work has been carried out to improve the existing Visual Background extractor algorithm. Result: After investigating many state of art techniques and finding out the research gaps, this paper presents an improved background subtraction technique based on morphological operation and 2D median filter for detecting moving object which reduces the noise in the output video and also enhances its accuracy at a very limited additional cost. Experimental results in several benchmark datasets confirmed the superiority of the proposed method over the state-of-the-art object detection methods. Conclusion: In this article, a method has been proposed for moving object detection where the quality of the output object is enhanced and good accuracy is achieved. This method provide with accurate experimental results, which helps in efficient object detection. The proposed technique also deals with Visual Background extractor Algorithm along with the Image Enhancement Procedure like Morphological and 2-D Filtering at a limited additional cost Discussion: This article worked on certain specific field, like noise reduction and image enhancement of output images of the existing ViBe Algorithm. The technique proposed in this article will be beneficial for various computer vision applications like video surveillance, road condition monitoring, airport safety, human activity analysis, monitoring marine border for security purpose etc.


2017 ◽  
Vol 11 (3) ◽  
pp. 98
Author(s):  
Ahmed Mustafa Taha Alzbier ◽  
Hang Cheng

As the present computer vision technology is growing up, and the multiple RGB color object tracking is considered as one of the important tasks in computer vision and technique that can be used in many applications such as surveillance in a factory production line, event organization, flow control application, analysis and sort by colors and etc. In video processing applications, variants of the background subtraction method are broadly used for the detection of moving objects in video sequences. The background subtraction is the most popular and common approach for motion detection. However , this is paper presents our investigation the first objective of the whole algorithm chain is to find the RGB color within a video. The idea from the beginning was to look for certain specific features of the patches, which would allow distinguishing red, green and blue color objects in the image. In this paper an algorithm is proposed to track the real time moving RGB color objects using kinect camera. We will use a kinect camera to capture the real time video and making an image frame from this video and extracting red, green and blue color .Here image processing is done through MATLAB for color recognition process each color. Our method can tracking accurately at 95% in real-time.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Chunsheng Chen ◽  
Din Li

In order to improve the video image processing technology, this paper presents a moving object detection and tracking algorithm based on computer vision technology. Firstly, the detection performance of the interframe difference method and the background difference model method is compared comprehensively from both theoretical and experimental aspects, and then the Robert edge detection operator is selected to carry out edge detection of the vehicle. The research results show that the algorithm proposed in this paper has the longest running time per frame when tracking a moving target, which is about 2.3 times that of the single frame running time of the CamShift algorithm. The algorithm has high running efficiency and can meet the requirements of real-time tracking of a foreground target. The algorithm has the highest tracking accuracy, the time consumption is reduced, and the error of the tracking frame deviating from the real position of the target is the least.


IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Nur Syazarin Natasha Abd Aziz ◽  
Salwani Mohd Daud ◽  
Rudzidatul Akmam Dziyauddin ◽  
Mohamad Zulkefli Adam ◽  
Azizul Azizan

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mohammed Aliy Mohammed ◽  
Fetulhak Abdurahman ◽  
Yodit Abebe Ayalew

Abstract Background Automating cytology-based cervical cancer screening could alleviate the shortage of skilled pathologists in developing countries. Up until now, computer vision experts have attempted numerous semi and fully automated approaches to address the need. Yet, these days, leveraging the astonishing accuracy and reproducibility of deep neural networks has become common among computer vision experts. In this regard, the purpose of this study is to classify single-cell Pap smear (cytology) images using pre-trained deep convolutional neural network (DCNN) image classifiers. We have fine-tuned the top ten pre-trained DCNN image classifiers and evaluated them using five class single-cell Pap smear images from SIPaKMeD dataset. The pre-trained DCNN image classifiers were selected from Keras Applications based on their top 1% accuracy. Results Our experimental result demonstrated that from the selected top-ten pre-trained DCNN image classifiers DenseNet169 outperformed with an average accuracy, precision, recall, and F1-score of 0.990, 0.974, 0.974, and 0.974, respectively. Moreover, it dashed the benchmark accuracy proposed by the creators of the dataset with 3.70%. Conclusions Even though the size of DenseNet169 is small compared to the experimented pre-trained DCNN image classifiers, yet, it is not suitable for mobile or edge devices. Further experimentation with mobile or small-size DCNN image classifiers is required to extend the applicability of the models in real-world demands. In addition, since all experiments used the SIPaKMeD dataset, additional experiments will be needed using new datasets to enhance the generalizability of the models.


2014 ◽  
Vol 533 ◽  
pp. 218-225 ◽  
Author(s):  
Rapee Krerngkamjornkit ◽  
Milan Simic

This paper describes computer vision algorithms for detection, identification, and tracking of moving objects in a video file. The problem of multiple object tracking can be divided into two parts; detecting moving objects in each frame and associating the detections corresponding to the same object over time. The detection of moving objects uses a background subtraction algorithm based on Gaussian mixture models. The motion of each track is estimated by a Kalman filter. The video tracking algorithm was successfully tested using the BIWI walking pedestrians datasets [. The experimental results show that system can operate in real time and successfully detect, track and identify multiple targets in the presence of partial occlusion.


Sign in / Sign up

Export Citation Format

Share Document