scholarly journals Properties of the Adjoint Operator of a General Fuzzy Bounded Operator

2021 ◽  
Vol 18 (1(Suppl.)) ◽  
2015 ◽  
Vol 3 (2) ◽  
pp. 81
Author(s):  
Rana Al-Muttalibi ◽  
Radhi M.A Ali

<p>The purpose of this paper is to introduce some definitions, properties and basic results that show the relation between F-bounded of linear operator in probabilistic Hilbert space and bounded operator in norm. In the paper, we prove that the adjoint operator in probabilistic Hilbert space is bounded. The notion of the continuous operators in probabilistic Hilbert space and some basic results are given. In addition, we note that every operator in probabilistic real Hilbert space is a self-adjoint Operator.</p>


Author(s):  
YONG MOON PARK

For a von Neumann algebra ࡕ acting on a Hilbert space ℋ with a cyclic and separating vector ξ0, we investigate the structure of Dirichlet forms on the natural standard form associated with the pair (ࡕ, ξ0). For a general bounded Lindblad type generator L of a conservative quantum dynamical semigroup on ࡕ, we give sufficient conditions so that the bounded operator H induced by L via the symmetric embedding of ࡕ into ℋ to be self-adjoint. It turns out that the self-adjoint operator H can be written in the form of a Dirichlet operator associated to a Dirichlet form given in Ref. 23. In order to make the connection possible, we also extend the range of applications of the formula in Ref. 23.


2012 ◽  
Vol 111 (1) ◽  
pp. 107 ◽  
Author(s):  
Morten Grud Rasmussen

Let $A$ be a $\nu$-vector of self-adjoint, pairwise commuting operators and $B$ a bounded operator of class $C^{n_0}(A)$. We prove a Taylor-like expansion of the commutator $[B,f(A)]$ for a large class of functions $f\colon\mathbf{R}^\nu\to\mathbf{R}$, generalising the one-dimensional result where $A$ is just a self-adjoint operator. This is done using almost analytic extensions and the higher-dimensional Helffer-Sjöstrand formula.


Author(s):  
Charles L. Epstein ◽  
Rafe Mazzeo

This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the martingale problem and therefore the existence of the associated Markov process. The book uses an “integral kernel method” to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. The book establishes the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. It shows that the semigroups defined by these operators have holomorphic extensions to the right half plane. The book also demonstrates precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.


Author(s):  
Sergei Chuiko ◽  
Yaroslav Kalinichenko ◽  
Nikita Popov

The original conditions of solvability and the scheme of finding solutions of a linear Noetherian difference-algebraic boundary-value problem are proposed in the article, while the technique of pseudoinversion of matrices by Moore-Penrose is substantially used. The problem posed in the article continues to study the conditions for solvability of linear Noetherian boundary value problems given in the monographs of A.M. Samoilenko, A.V. Azbelev, V.P. Maximov, L.F. Rakhmatullina and A.A. Boichuk. The study of differential-algebraic boundary-value problems is closely related to the investigation of boundary-value problems for difference equations, initiated in the works of A.A. Markov, S.N. Bernstein, Y.S. Bezikovych, O.O. Gelfond, S.L. Sobolev, V.S. Ryabenkyi, V.B. Demidovych, A. Halanai, G.I. Marchuk, A.A. Samarskyi, Yu.A. Mytropolskyi, D.I. Martyniuk, G.M. Vainiko, A.M. Samoilenko and A.A. Boichuk. On the other hand, the study of boundary-value problems for difference equations is related to the study of differential-algebraic boundary-value problems initiated in the papers of K. Weierstrass, N.N. Lusin and F.R. Gantmacher. Systematic study of differential-algebraic boundary value problems is devoted to the works of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, N.A. Perestiyk, V.P. Yakovets, A.A. Boichuk, A. Ilchmann and T. Reis. The study of differential-algebraic boundary value problems is also associated with numerous applications of such problems in the theory of nonlinear oscillations, in mechanics, biology, radio engineering, control theory, motion stability theory. The general case of a linear bounded operator corresponding to the homogeneous part of a linear Noetherian difference-algebraic boundary value problem has no inverse is investigated. The generalized Green operator of a linear difference-algebraic boundary value problem is constructed in the article. The relevance of the study of solvability conditions, as well as finding solutions of linear Noetherian difference-algebraic boundary-value problems, is associated with the widespread use of difference-algebraic boundary-value problems obtained by linearizing nonlinear Noetherian boundary-value problems for systems of ordinary differential and difference equations. Solvability conditions are proposed, as well as the scheme of finding solutions of linear Noetherian difference-algebraic boundary value problems are illustrated in detail in the examples.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2020 ◽  
Vol 18 (1) ◽  
pp. 1615-1624
Author(s):  
Guangyu An ◽  
Ying Yao

Abstract In this paper, we study the Hyers-Ulam-Rassias stability of ( m , n ) (m,n) -Jordan derivations. As applications, we characterize ( m , n ) (m,n) -Jordan derivations on C ⁎ {C}^{\ast } -algebras and some non-self-adjoint operator algebras.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


Sign in / Sign up

Export Citation Format

Share Document