scholarly journals Study of the Singlet and the Triplet States of Two ElectronSystems in the First Excited State

2010 ◽  
Vol 7 (1) ◽  
pp. 36-40
Author(s):  
Baghdad Science Journal

A study of the singlet and triplet states of two electron systems in the first excited state was performed using a simple quantum mechanical model, which assigns the 1s,and 2s orbital with two different variational parameters. Our results agree with a high level calculation used by Snow and Bills.

1996 ◽  
Vol 05 (04) ◽  
pp. 433-440 ◽  
Author(s):  
DHURJATI PRASAD DATTA

A simple quantum mechanical model of a closed interacting system is studied following the intrinsic time formalism developed recently, on the basis of the modified Born-Oppenheimer approximation. Apart from shedding further insights into the recent results on a possible nongravitating vacuum energy in the universe, the study also offers potentially interesting possibilities even in atomic/molecular physics.


2020 ◽  
Author(s):  
Robert Pollice ◽  
Pascal Friederich ◽  
Cyrille Lavigne ◽  
Gabriel dos Passos Gomes ◽  
Alan Aspuru-Guzik

One of the recent proposals for the design of state-of-the-art emissive materials for organic light emitting diodes (OLEDs) is the principle of thermally activated delayed fluorescence (TADF). The underlying idea is to enable facile thermal upconversion of excited state triplets, which are generated upon electron-hole recombination, to excited state singlets by minimizing the corresponding energy difference resulting in devices with up to 100% internal quantum efficiencies (IQEs). Ideal emissive materials potentially surpassing TADF emitters should have both negative singlet-triplet gaps and appreciable fluorescence rates to maximize reverse intersystem crossing (rISC) rates from excited triplets to singlets while minimizing ISC rates and triplet state occupation leading to long-term operational stability. However, molecules with negative singlet-triplet gaps are extremely rare and, to the best of our knowledge, not emissive. In this work, based on computational studies, we describe the first molecules with negative singlet-triplet gaps and considerable fluorescence rates and show that they are more common than hypothesized previously.


Sign in / Sign up

Export Citation Format

Share Document