scholarly journals Rotation Effect in Morse Potential For K2 Molecule

2011 ◽  
Vol 8 (4) ◽  
pp. 968-971
Author(s):  
Baghdad Science Journal

The rotation effect upon Morse potential had been studied and the values of the effective potential in potential curves had been calculated for electronic states (X2?+g , B ?u ) K2 molecule. The calculation had been computed for rotational quantum number (J = 5). Also, drawing potential curves for these systems had been done using Herzberg and Gaydon equations. It was found that the values of the dissociation energy which resulting from using Herzberg equation greater than that of Gaydon equation. Besides, it was found that the rotation effect for (X and B) electronic states in Morse potential is very small and in this case may negligible.

2014 ◽  
Vol 11 (2) ◽  
pp. 535-539
Author(s):  
Baghdad Science Journal

A study of the emission spectra of isotopic for electronic states has been carried out. The energies of the vibration levels ( =0,1,..25) and the values of spectral lines R(J) and P(J) versus rotational quantum number (J=0,1..25). It was found that were an increase of the value of R(J) with the increase of the values of J was found while the value of P(J) decreases with decreasing of the values of J . It was found that corresponding to R(J) and P(J) the spectral line R(J) increases when the values of m increased.


1995 ◽  
Vol 73 (1-2) ◽  
pp. 59-62 ◽  
Author(s):  
Marcin Molski ◽  
Jerzy Konarski

A modified Dunham potential with parameters depending on the rotational quantum number is employed to describe the rovibrational states of diatomic molecules. This approach, applied to H81Br, 115InD, 7LiH, and 40Ar2, gives satisfactory reproduction of the observed transitions using fewer Dunham parameters than in the standard method. The results obtained indicate the possibility of introducing the local internal potentials, which, in contradiction to the global ones usually used, depend on the rotational states of a rotating–vibrating molecule. Such a J dependence may be a result of rovibronic interactions, in particular, Coriolis-type nonadiabatic interactions coupling other electronic states through the rotational angular momentum.


2012 ◽  
Vol 90 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Ningjiu Zhao ◽  
Yufang Liu

In this work, we employed the quasi-classical trajectory (QCT) method to study the vector correlations and the influence of the reagent initial rotational quantum number j for the reaction He + T2+ (v = 0, j = 0–3) → HeT+ + T on a new potential energy surface (PES). The PES was improved by Aquilanti co-workers (Chem. Phys. Lett. 2009. 469: 26–30). The polarization-dependent differential cross sections (PDDCSs) and the distributions of P(θr), P([Formula: see text]r), and P(θr, [Formula: see text]r) are presented in this work. The plots of the PDDCSs provide us with abundant information about the distribution of the product angular momentum polarization. The P(θr) is used to describe the correlation between k (the relative velocity of the reagent) and j′ (the product rotational angular momentum). The distribution of dihedral angle P([Formula: see text]r) shows the k–k′–j′ (k′ refers to the relative velocity of the product) correlation. The PDDCS calculations illustrate that the product of this reaction is mainly backward scatter and it has the strongest polarization in the backward and sideways scattering directions. At the same time, the results of the P([Formula: see text]r) demonstrate that the product HeT+ tends to be oriented along the positive direction of the y axis and it tends to rotate right-handedly in planes parallel to the scattering plane. Moreover, the distribution of the P(θr) manifests that the product angular momentum is aligned along different directions relative to k. The direction of the product alignment may be perpendicular, opposite, or parallel to k. Moreover, our calculations are independent of the initial rotational quantum number.


2008 ◽  
Vol 5 (3) ◽  
pp. 446-448
Author(s):  
Baghdad Science Journal

A calculation have been carried out for determination some of the spectroscopic properties of Hydrogen Iodide HI molecules such as, the intensity of the absorption spectrum as a function of the variation of the temperature ranging from 10 to 1000 K. This study shows that the populations and hence intensity of the molecule increased as the temperature increased. Another determination of the maximum rotational quantum number Jmax of N2 , CO , BrF AgCl and HI molecules has been carried out.


Science ◽  
2020 ◽  
Vol 368 (6492) ◽  
pp. 767-771 ◽  
Author(s):  
Yurun Xie ◽  
Hailin Zhao ◽  
Yufeng Wang ◽  
Yin Huang ◽  
Tao Wang ◽  
...  

Understanding quantum interferences is essential to the study of chemical reaction dynamics. Here, we provide an interesting case of quantum interference between two topologically distinct pathways in the H + HD → H2 + D reaction in the collision energy range between 1.94 and 2.21 eV, manifested as oscillations in the energy dependence of the differential cross section for the H2 (v′ = 2, j′ = 3) product (where v′ is the vibrational quantum number and j′ is the rotational quantum number) in the backward scattering direction. The notable oscillation patterns observed are attributed to the strong quantum interference between the direct abstraction pathway and an unusual roaming insertion pathway. More interestingly, the observed interference pattern also provides a sensitive probe of the geometric phase effect at an energy far below the conical intersection in this reaction, which resembles the Aharonov–Bohm effect in physics, clearly demonstrating the quantum nature of chemical reactivity.


2001 ◽  
Vol 79 (2-3) ◽  
pp. 299-343 ◽  
Author(s):  
T Hirao ◽  
P F Bernath

The A1Π – X1Σ+ and B1Σ+ – X1Σ+ transitions of copper monobromide, CuBr, were recorded with a Fourier transform spectrometer. The emission was generated by using a hollow cathode discharge of Ar buffer gas and a mixture of Cu and CuBr powders. The mass-dependent Dunham expansion formula was used to obtain improved molecular constants for the ground, A and B states. These molecular constants provided RKR potential curves and Franck–Condon factors for the A–X and B–X transitions.PACS No. 35.80 transitions. PACS No. 35.80


Sign in / Sign up

Export Citation Format

Share Document