Quantum interference in H + HD → H2 + D between direct abstraction and roaming insertion pathways

Science ◽  
2020 ◽  
Vol 368 (6492) ◽  
pp. 767-771 ◽  
Author(s):  
Yurun Xie ◽  
Hailin Zhao ◽  
Yufeng Wang ◽  
Yin Huang ◽  
Tao Wang ◽  
...  

Understanding quantum interferences is essential to the study of chemical reaction dynamics. Here, we provide an interesting case of quantum interference between two topologically distinct pathways in the H + HD → H2 + D reaction in the collision energy range between 1.94 and 2.21 eV, manifested as oscillations in the energy dependence of the differential cross section for the H2 (v′ = 2, j′ = 3) product (where v′ is the vibrational quantum number and j′ is the rotational quantum number) in the backward scattering direction. The notable oscillation patterns observed are attributed to the strong quantum interference between the direct abstraction pathway and an unusual roaming insertion pathway. More interestingly, the observed interference pattern also provides a sensitive probe of the geometric phase effect at an energy far below the conical intersection in this reaction, which resembles the Aharonov–Bohm effect in physics, clearly demonstrating the quantum nature of chemical reactivity.

Science ◽  
2015 ◽  
Vol 347 (6217) ◽  
pp. 60-63 ◽  
Author(s):  
Tiangang Yang ◽  
Jun Chen ◽  
Long Huang ◽  
Tao Wang ◽  
Chunlei Xiao ◽  
...  

The Cl + H2 reaction is an important benchmark system in the study of chemical reaction dynamics that has always appeared to proceed via a direct abstraction mechanism, with no clear signature of reaction resonances. Here we report a high-resolution crossed–molecular beam study on the Cl + HD (v = 1, j = 0) → DCl + H reaction (where v is the vibrational quantum number and j is the rotational quantum number). Very few forward scattered products were observed. However, two distinctive peaks at collision energies of 2.4 and 4.3 kilocalories per mole for the DCl (v′ = 1) product were detected in the backward scattering direction. Detailed quantum dynamics calculations on a highly accurate potential energy surface suggested that these features originate from two very short-lived dynamical resonances trapped in the peculiar H-DCl (v′ = 2) vibrational adiabatic potential wells that result from chemical bond softening. We anticipate that dynamical resonances trapped in such wells exist in many reactions involving vibrationally excited molecules.


1989 ◽  
Vol 260 (4) ◽  
pp. 56-62 ◽  
Author(s):  
Yoseph Imry ◽  
Richard A. Webb

1994 ◽  
Vol 47 (3) ◽  
pp. 245 ◽  
Author(s):  
Vu B Ho ◽  
Michael J Morgan

The gravitational Aharonov-Bohm (AB) effect is examined in the weak-field approximation to general relativity. In analogy with the electromagnetic AB effect, we find that a gravitoelectromagnetic 4-vector potential gives rise to interference effects. A matter wave interferometry experiment, based on a modification of the gravity-induced quantum interference experiment of Colella, Overhauser and Werner (COW), is proposed to explicitly test the gravitoelectric version of the AB effect in a uniform gravitational field.


2002 ◽  
Vol 17 (06n07) ◽  
pp. 1045-1048 ◽  
Author(s):  
V. G. BAGROV ◽  
D. M. GITMAN ◽  
V. B. TLYACHEV

Aharonov-Bohm solenoid changes the energy spectrum of charge particles in pure magnetic field. In particular, the degeneracy with respect to azimuthal quantum number l is partially lifted. In turn, this complicates the radiation spectrum of a charged particle in magnetic field in the presence of the solenoid (Aharonov-Bohm effect). In particular, the degeneracy of the radiation intensity with respect to the azimuthal quantum number is lifted completely. In the present work we study l-dependence (induced by Aharonov-Bohm solenoid) of synchrotron radiation intensity in semiclassical approximation.


1994 ◽  
Vol 08 (05) ◽  
pp. 301-310 ◽  
Author(s):  
A.M. JAYANNAVAR ◽  
P. SINGHA DEO

We have investigated the magnetoconductance of a normal metal loop connected to ideal wires in the presence of magnetic flux. The quantum mechanical potential, V, in the loop is much higher than that in the connecting wires (V=0). The electrons with energies less than the potential height on entering the loop propagate as evanescent modes. In such a situation, the contribution to the conductance arises from two non-classical effects, namely, Aharonov-Bohm effect and quantum tunneling. For this case we show that, on application of a small magnetic field, the conductance initially always decreases, or small field magnetoconductance is always negative. This is in contrast to the behavior in the absence of the barrier, wherein the small field magnetoconductance is either positive or negative depending on the Fermi energy and other geometric details. We also discuss the possibility of a better switch action based on quantum interference effects in such structures.


Sign in / Sign up

Export Citation Format

Share Document