The Chirwa dome: granite emplacement during late Archaean thrusting along the northeastern margin of the Zimbabwe craton

2002 ◽  
Vol 105 (4) ◽  
pp. 285-300 ◽  
Author(s):  
A. Hofmann
1993 ◽  
Vol 130 (6) ◽  
pp. 755-765 ◽  
Author(s):  
H. R. Rollinson

AbstractThe Limpopo Belt is a zone of thickened Archaean crust whose origin is currently explained by a late Archaean continent-continent collision between the Kaapvaal and Zimbabwe cratons. This review shows that the two cratons have fundamentally different geological histories and that the Zimbabwe Craton was unlikely to have behaved as a stable ‘cratonic’ block at the time of the Limpopo Belt collision. The geological histories of the Zimbabwe Craton, the North Marginal, Central and South Marginal zones of the Limpopo Belt and the Kaapvaal Craton are shown to be sufficiently different from one another to warrant their consideration as discrete terranes. The boundaries between the five units outlined above are all major shear zones, further supporting a terrane model for the Limpopo Belt. The five units were all intruded by late- to syn-tectonic granites c.2.6 Ga, constraining the accretion event to c. 2.6 Ga.


2019 ◽  
Vol 177 (2) ◽  
pp. 1043-1069
Author(s):  
Rubeni T. Ranganai ◽  
Oswald Gwavava ◽  
Cynthia J. Ebinger ◽  
Kathryn A. Whaler

2017 ◽  
Vol 298 ◽  
pp. 421-438 ◽  
Author(s):  
Sarah M. Glynn ◽  
Sharad Master ◽  
Michael Wiedenbeck ◽  
Donald W. Davis ◽  
Jan D. Kramers ◽  
...  
Keyword(s):  

2021 ◽  
pp. 106267
Author(s):  
Natalya A.V. Zavina-James ◽  
Aubrey L. Zerkle ◽  
Robert C.J. Steele ◽  
Matthew R. Warke ◽  
Gareth Izon ◽  
...  

Author(s):  
Sheng Wang ◽  
Yingde Jiang ◽  
Roberto Weinberg ◽  
Karel Schulmann ◽  
Jian Zhang ◽  
...  

Flow of partially molten crust is a key contributor to mass and heat redistribution within orogenic systems, however, this process has not yet been fully understood in accretionary orogens. This issue is addressed in a Devonian migmatite-granite complex from the Chinese Altai through structural, petrological, and geochronological investigations presented in this study. The migmatite-granite complex records a gradual evolution from metatexite, diatexite to granite and preserves a record of two main Devonian phases of deformation designated D1 and D2. The D1 phase was subdivided into an early crustal thickening episode (D1B) and a later extensional episode (D1M) followed by D2 upright folding. The D1M episode is associated with anatexis in the deep crust. Vertical shortening, associated with D1M, gave rise to the segregation of melt and formation of a sub-horizontal layering of stromatic metatexite. This fabric was reworked by the D2 deformation associated with the migration of anatectic magma in the cores of F2 antiforms. Geochronological investigations combined with petro-structural analysis reveal that: (1) D1M partial melting started probably at 420−410 Ma and formed sub-horizontal stromatic metatexites at ∼30 km depth; (2) The anatectic magma accumulated and migrated when a drainage network developed, as attested by the pervasive formation of massive diatexite migmatites, at 410−400 Ma; (3) Soon after, massive flow of the partially molten crust from orogenic lower to orogenic upper crustal levels, assisted by the interplay between D2 upright folding and magma diapirism, led to migmatite-granite emplacement in the cores of regional F2 antiforms that lasted until at least 390 Ma; (4) a terminal stage was manifested by the emplacement of 370−360 Ma granite dykes into the surrounding metamorphic envelope. We propose that Devonian anatexis assisted by deformation governed first the horizontal and then the vertical flow of partially molten orogenic lower crust, which drove crustal flow, mass redistribution, and crustal differentiation in the accretionary system of the Chinese Altai.


2006 ◽  
Vol 361 (1470) ◽  
pp. 917-929 ◽  
Author(s):  
James F Kasting ◽  
Shuhei Ono

Earth's climate during the Archaean remains highly uncertain, as the relevant geologic evidence is sparse and occasionally contradictory. Oxygen isotopes in cherts suggest that between 3.5 and 3.2 Gyr ago (Ga) the Archaean climate was hot (55–85 °C); however, the fact that these cherts have experienced only a modest amount of weathering suggests that the climate was temperate, as today. The presence of diamictites in the Pongola Supergroup and the Witwatersrand Basin of South Africa suggests that by 2.9 Ga the climate was glacial. The Late Archaean was relatively warm; then glaciation (possibly of global extent) reappeared in the Early Palaeoproterozoic, around 2.3–2.4 Ga. Fitting these climatic constraints with a model requires high concentrations of atmospheric CO 2 or CH 4 , or both. Solar luminosity was 20–25% lower than today, so elevated greenhouse gas concentrations were needed just to keep the mean surface temperature above freezing. A rise in O 2 at approximately 2.4 Ga, and a concomitant decrease in CH 4 , provides a natural explanation for the Palaeoproterozoic glaciations. The Mid-Archaean glaciations may have been caused by a drawdown in H 2 and CH 4 caused by the origin of bacterial sulphate reduction. More work is needed to test this latter hypothesis.


Sign in / Sign up

Export Citation Format

Share Document