scholarly journals Provenance of the Incipient Passive Margin of NW Laurentia (Neoproterozoic): Detrital Zircon from Continental Slope and Basin Floor Deposits of the Windermere Supergroup, Southern Canadian Cordillera

Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Thomas Hadlari ◽  
R. W. C. Arnott ◽  
W. A. Matthews ◽  
T. P. Poulton ◽  
K. Root ◽  
...  

Abstract The origin of the passive margin forming the paleo-Pacific western edge of the ancestral North American continent (Laurentia) constrains the breakup of Rodinia and sets the stage for the Phanerozoic evolution of Laurentia. The Windermere Supergroup in the southern Canadian Cordillera records rift-to-drift sedimentation in the form of a prograding continental margin deposited between ~730 and 570 Ma. New U-Pb detrital zircon analysis from samples of the post-rift deposits shows that the ultimate source area was the shield of NW Laurentia and the near uniformity of age spectra are consistent with a stable continental drainage system. No western sediment source area was detected. Detrital zircon from postrift continental slope deposits are a proxy for ca. 676-656 Ma igneous activity in the Windermere basin, likely related to continental breakup, and set a maximum depositional age for slope deposits on the eastern side of the basin at 652±9 Ma. These results are consistent with previous interpretations. The St. Mary-Moyie fault zone near the Canada-U.S. border was most likely a major transform boundary separating a rifted continental margin to the north from intracratonic rift basins to the south, resolving north-south variations along western Laurentia in the late Neoproterozoic at approximately 650-600 Ma. For Rodinia reconstructions, the conjugate margin to the southern Canadian Cordillera would have a record of rifting between ~730 and 650 Ma followed by passive margin sedimentation.

2002 ◽  
Vol 39 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Maurice Colpron ◽  
James M Logan ◽  
James K Mortensen

A concordant U–Pb zircon age of 569.6 ± 5.3 Ma from synrift volcanic rocks of the Hamill Group, southeastern Canadian Cordillera, provides the first direct U–Pb geochronologic constraint on timing of latest Neoproterozoic rifting along western Laurentia. This age confirms a previous estimate of 575 ± 25 Ma for timing of continental breakup, as derived from the analysis of tectonic subsidence in lower Paleozoic miogeoclinal strata of the North American Cordillera. It also corresponds to the timing of passive margin deposition in the "underlying" Windermere Supergroup of the northern Cordillera, as determined by chemostratigraphic correlations. These timing relationships imply a different breakup history for the northern, as compared to the southern, Cordillera. We propose a model that attempts to explain this paradox of Cordilleran geology. The earlier Neoproterozoic (Windermere-age) rifting event probably records breakup of a continental mass from northern Laurentia followed by development of a passive margin. Accordingly, the Windermere Supergroup of the southern Canadian Cordillera was deposited in an intracontinental rift. The second Neoproterozoic rifting (Hamill–Gog) is interpreted to indicate continental breakup and establishment of a passive margin along western Laurentia.


2002 ◽  
Vol 39 (5) ◽  
pp. 795-829 ◽  
Author(s):  
Charles F Gower ◽  
Thomas E Krogh

The geological evolution of the eastern Grenville Province can be subdivided into three stages. During the first stage, namely pre-Labradorian (> 1710 Ma) and Labradorian (1710–1600 Ma) events, a continental-marginal basin was created and subsequently destroyed during accretion of a magmatic arc formed over a south-dipping subduction zone. Subduction was short-lived and arrested, leading to a passive continental margin. The second stage addresses events between 1600 and 1230 Ma. The passive margin lasted until 1520 Ma, following which a continental-margin arc was constructed during Pinwarian (1520–1460 Ma) orogenesis. Elsonian (1460–1230 Ma) distal-inboard, mafic and anorthositic magmatism, decreasing in age northward, is explained by funnelled flat subduction, possibly associated with an overridden spreading centre. As the leading edge of the lower plate advanced, it was forced beneath the Paleoproterozoic Torngat orogen root between the Archean Superior and North Atlantic cratons, achieving its limit of penetration by 1290 Ma. Static north-northeast-trending rifting then ensued, with mafic magmatism flanked by felsic products to the north and south. Far-field orogenic effects heralded the third stage, lasting from 1230 to 955 Ma. Until 1180 Ma, the eastern Grenville Province was under the distal, mild influence of Elzevirian orogenesis. From 1180 to 1120 Ma, mafic and anorthositic magmatism occurred, attributed to back-arc tectonism inboard of a post-Elzevirian Laurentian margin. Quiescence then prevailed until Grenvillian (1080–980 Ma) continent–continent collision. Grenvillian orogenesis peaked in different places at different times as thrusting released stress, thereby precipitating its shift elsewhere (pressure-point orogenesis). High-grade metamorphism, thrusting and minor magmatism characterized the Exterior Thrust Zone, in contrast to voluminous magmatism in the Interior Magmatic Belt. Following final deformation, early posttectonic anorthositic–alkalic–mafic magmatism (985–975 Ma) and late posttectonic monzonitic–syenite–granite magmatism (975–955 Ma) brought the active geological evolution of this region to a close.


1996 ◽  
Vol 33 (6) ◽  
pp. 848-862 ◽  
Author(s):  
R. W. Dalrymple ◽  
G. M. Narbonne

The Sheepbed Formation (Ediacaran) is a 1 km thick, siliciclastic unit that overlies glacial deposits of the Ice Brook Formation and is overlain by carbonates of the Gametrail Formation. Observations in the Mackenzie Mountains indicate that the Sheepbed Formation accumulated in water depths of 1–1.5 km on a passive-margin, continental slope. The lower part of the formation consists predominately of dark mudstone. Fine-grained, turbiditic sandstone becomes more abundant upward, as does the scale and abundance of slope-instability indicators. Mesoscale facies successions (i.e., evidence of channels, lobes, and (or) compensation cycles) are developed in the upper half of the formation. The larger-scale changes are interpreted as reflecting a postglacial sea-level rise, followed by a relative fall and an increase in the rate of deposition. Contourites that may have been formed in response to the circulation of deep, cold water occur in the lowstand deposits. Their presence confirms previous speculation that the proto-Pacific Ocean was initiated at the beginning of Windermere deposition (ca. 780 Ma), not at the start of the Cambrian. The paleoflow direction toward the present-day northwest suggests that this part of Laurentia lay in the northern hemisphere. In situ Ediacaran megafossils are preserved on the soles of sandy turbidites; the deep-water setting indicates that these organisms were not photoautotrophs.


2020 ◽  
Author(s):  
Yoe Perez ◽  
Julia Fonseca ◽  
Helenice Vital ◽  
Andre Silva ◽  
David Castro

<p>The Brazilian Continental Margin (BEM) deep-water regions contain important geological features that need advance in their characterization. Mass-transport deposits (MTD) are important not only by their significance in the sedimentary but also because of their negative impact economically. A slump is a coherent mass of sediment that moves on a concave-up glide plane and undergoes rotational movements causing internal deformation and one of the basic types of MTD. The study area comprises part of the offshore Potiguar Basin in NE Brazil, on the distal eastern portion of the Touros High and Fernando de Noronha Ridge. This portion of the Potiguar Basin comprises a transform rift system that has evolved into a continental passive margin. This basin represents an important location related to the breakup between South America and Africa. The database used in this work included 2D post-stack time-migrated seismic profiles from the Brazilian Agency of Petroleum, Natural Gas, and Biofuels (ANP). The slumps reflectors are identified on the continental shelf profiles in form of present clinoform configuration, medium to high continuity, high amplitudes, and medium to high frequencies, representing a sigmoidal oblique complex prograding reflector. The slump scars at the continental slope indicate that this is a gravitationally unstable area that will eventually collapse, resulting in erosional features on the continental slope and deposition on the continental rise. Our results provide some insights regarding MDT slumps sedimentary evolution in the BEM deep water area as well as their interrelation with other sedimentary deposits.</p>


Geosphere ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1479-1507 ◽  
Author(s):  
James E. Evans ◽  
Joshua T. Maurer ◽  
Christopher S. Holm-Denoma

Abstract The Upper Devonian Ignacio Formation (as stratigraphically revised) comprises a transgressive, tide-dominated estuarine depositional system in the San Juan Mountains (Colorado, USA). The unit backfills at least three bedrock paleovalleys (10–30 km wide and ≥42 m deep) with a consistent stratigraphy of tidally influenced fluvial, bayhead-delta, central estuarine-basin, mixed tidal-flat, and estuarine-mouth tidal sandbar deposits. Paleovalleys were oriented northwest while longshore transport was to the north. The deposits represent Upper Devonian lowstand and transgressive systems tracts. The overlying Upper Devonian Elbert Formation (upper member) consists of geographically extensive tidal-flat deposits and is interpreted as mixed siliciclastic-carbonate bay-fill facies that represents an early highstand systems tract. Stratigraphic revision of the Ignacio Formation includes reassigning the basal conglomerate to the East Lime Creek Conglomerate, recognizing an unconformity separating these two units, and incorporating strata previously mapped as the McCracken Sandstone Member (Elbert Formation) into the Ignacio Formation. The Ignacio Formation was previously interpreted as Cambrian, but evidence that it is Devonian includes reexamined fossil data and detrital zircon U-Pb geochronology. The Ignacio Formation has a stratigraphic trend of detrital zircon ages shifting from a single ca. 1.7 Ga age peak to bimodal ca. 1.4 Ga and ca. 1.7 Ga age peaks, which represents local source-area unroofing history. Specifically, the upper plate of a Proterozoic thrust system (ca. 1.7 Ga Twilight Gneiss) was eroded prior to exposure of the lower plate (ca. 1.4 Ga Uncompahgre Formation). These results are a significant alternative interpretation of the geologic history of the southern Rocky Mountains.


2019 ◽  
Vol 131 (9-10) ◽  
pp. 1673-1701 ◽  
Author(s):  
David P. Moynihan ◽  
Justin V. Strauss ◽  
Lyle L. Nelson ◽  
Colin D. Padget

AbstractNeoproterozoic–Cambrian rocks of the Windermere Supergroup and overlying units record the breakup of Rodinia and formation of the northwestern Laurentian ancestral continental margin. Understanding the nature and timing of this transition has been hampered by difficulty correlating poorly dated sedimentary successions from contrasting depositional settings across Mesozoic structures. Here we present new litho- and chemo-stratigraphic data from a Cryogenian–lower Cambrian succession in east-central Yukon (Canada), establish correlations between proximal and distal parts of the upper Windermere Supergroup and related strata in the northern Canadian Cordillera, and consider implications for the formation of the northwestern Laurentian margin. The newly defined Nadaleen Formation hosts the first appearance of Ediacaran macrofossils, while the overlying Gametrail Formation features a large negative carbon isotope anomaly with δ13Ccarb values as low as –13‰ that correlates with the globally developed Shuram-Wonoka anomaly. We also define the Rackla Group, which includes the youngest (Ediacaran) portions of the Windermere Supergroup in the northern Cordillera. The top of the Windermere Supergroup is marked by an unconformity above the Risky Formation that passes into a correlative conformity in the Nadaleen River area. This surface has been interpreted to mark the top of the rift-related succession, but we draw attention to evidence for tectonic instability through the early-middle Cambrian and argue that the transition from rifting to post-rift thermal subsidence is marked by a widespread unconformity that underlies upper Cambrian carbonate rocks. This is younger than the interpreted age of the rift to post-rift transition elsewhere along the ancestral western Laurentian continental margin.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 745
Author(s):  
Wenhua Han ◽  
Haizhou Ma ◽  
Weixuan Fang ◽  
Huaide Cheng ◽  
Yongshou Li ◽  
...  

Qamdo basin is located between the suture zone of Jinsha River (Ailao Mountains) and that of Ban Gong Lake (Nujiang) in the eastern Tethys. Part of the Jingxing Formation is deposited in the southwest of the basin. In this study, two profiles were investigated from the north and south of Qamdo basin. The characteristics of detrital zircon LA-ICP-MS U-Pb age, and the main and trace elements of sandstone were analyzed. The characteristics of major and trace elements showed that the tectonic setting of the study area is mainly composed of a relatively stable active continental margin and a passive continental margin, showing characteristics of a continental island arc. The weathering degree of Jingxing Formation in the Qamdo area is lower than that in the Lanping-Simao area, which may be closer to the origin. The age distribution characteristics of detrital zircon grains indicate that the Qiangtang Block, Youjiang basin, and Yangtze area jointly constitute the provenance of the Qamdo-Lanping-Simao basin. Both basins may be part of a large marine basin with unified water conservancy connection before evaporite deposition. Metamorphic seawater from the Qamdo basin may migrate to the Lanping-Simao basin and even the Khorat basin, where evaporite was deposited.


2021 ◽  
Author(s):  
Anatoly Nikishin ◽  
Vasily Savin ◽  
Sierd Cloetingh ◽  
Carmen Gaina ◽  
Nikolay Malyshev ◽  
...  

<p>New seismic, magnetic and gravity data of the continental margin of the Laptev Sea shelf indicate: (<strong>1</strong>) Absence of the Lomonosov-Khatanga transform fault between the Eurasia Basin and Laptev Sea shelf. On a number of new seismic lines we do not observe evidence for transtension or transpressional deformation along this lineament whereas some typical deformation for the continental slopes is recognized. Recent seisimicity is absent along the lineament. (<strong>2</strong>) The pull-apart Laptev-Gakkel continental basin along the Laptev Sea continental slope is in an orthogonal position to the Gakkel Ridge axial rift. This pull-apart basin was tectonically active during Eocene-Oligocene times. (<strong>3</strong>) Evidence exists for number possible intrusions just below the rift/postrift (break-up) unconformity (56 Ma) on some seismic lines in the area between the Taimyr Shelf and the continental slope of the Eurasia Basin. Evidence is also found for the existence of possible volcanics just below the break-up unconformity in this area. (<strong>4</strong>) Intrusions might also be present just below the 56 Ma break-up unconformity recognized on some seismic lines in the area between the Lomonosov Ridge and the continental slope of the Eurasia Basin. Buried volcanoes are likely present as well. These two magmatic provinces are symmetric to each other on both sides of the Eurasia Basin and well expressed on the new magnetic anomaly map.(<strong>5</strong>) The Eurasia Basin has a conical shape in its Southern near-Laptev domain. Opening of the basin appears to be controlled by propagation of oceanic crust spreading to the south. (<strong>6</strong>) We assume that the continental margin between the Laptev Sea Shelf and the Eurasian Basin could be a passive volcanic margin. This margin is characterized by a structure that is very similar to the North Atlantic margin of almost the same age. This study was supported by RFBR grant (18-05-70011).</p>


Sign in / Sign up

Export Citation Format

Share Document