Associations of platinum-group minerals of the Noril'sk copper-nickel sulfide ores

1986 ◽  
Vol 81 (5) ◽  
pp. 1203-1212 ◽  
Author(s):  
A. D. Genkin ◽  
T. L. Evstigneeva
1975 ◽  
Vol 17 (3) ◽  
pp. 342-346 ◽  
Author(s):  
A.D. Genkin ◽  
T.L. Yevstigneyeva ◽  
L.N. Vyal'sov ◽  
I.P. Laputina ◽  
N.V. Groneva

1978 ◽  
Vol 20 (1) ◽  
pp. 96-100 ◽  
Author(s):  
A. D. Genkin ◽  
T. L. Yevstigneyeva ◽  
N. V. Troneva ◽  
L. N. Vyal'sov

Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 581 ◽  
Author(s):  
Thomas Oberthür

Diverse studies were performed in order to investigate the behavior of the platinum-group minerals (PGM) in the weathering cycle in the Bushveld Complex of South Africa and the Great Dyke of Zimbabwe. Samples were obtained underground, from core, in surface outcrops, and from alluvial sediments in rivers draining the intrusions. The investigations applied conventional mineralogical methods (reflected light microscopy) complemented by modern techniques (scanning electron microscopy (SEM), mineral liberation analysis (MLA), electron-probe microanalysis (EPMA), and LA-ICPMS analysis). This review aims at combining the findings to a coherent model also with respect to the debate regarding allogenic versus authigenic origin of placer PGM. In the pristine sulfide ores, the PGE are present as discrete PGM, dominantly PGE-bismuthotellurides, -sulfides, -arsenides, -sulfarsenides, and -alloys, and substantial though variable proportions of Pd and Rh are hosted in pentlandite. Pt–Fe alloys, sperrylite, and most PGE-sulfides survive the weathering of the ores, whereas the base metal sulfides and the (Pt,Pd)-bismuthotellurides are destroyed, and ill-defined (Pt,Pd)-oxides or -hydroxides develop. In addition, elevated contents of Pt and Pd are located in Fe/Mn/Co-oxides/hydroxides and smectites. In the placers, the PGE-sulfides experience further modification, whereas sperrylite largely remains a stable phase, and grains of Pt–Fe alloys and native Pt increase in relative proportion. In the Bushveld/Great Dyke case, the main impact of weathering on the PGM assemblages is destruction of the unstable PGM and PGE-carriers of the pristine ores and of the intermediate products of the oxidized ores. Dissolution and redistribution of PGE is taking place, however, the newly-formed products are thin films, nano-sized particles, small crystallites, or rarely µm-sized grains primarily on substrates of precursor detrital/allogenic PGM grains, and they are of subordinate significance. In the Bushveld/Great Dyke scenario, and in all probability universally, authigenic growth and formation of discrete, larger PGM crystals or nuggets in the supergene environment plays no substantial role, and any proof of PGM “neoformation” in a grand style is missing. The final PGM suite which survived the weathering process en route from sulfide ores via oxidized ores into placers results from the continuous elimination of unstable PGM and the dispersion of soluble PGE. Therefore, the alluvial PGM assemblage represents a PGM rest spectrum of residual, detrital grains.


2020 ◽  
Vol 115 (6) ◽  
pp. 1267-1303
Author(s):  
Sergey F. Sluzhenikin ◽  
Marina A. Yudovskaya ◽  
Stephen J. Barnes ◽  
Vera D. Abramova ◽  
Margaux Le Vaillant ◽  
...  

Abstract Low-sulfide platinum group element (PGE) mineralization of the Norilsk-type intrusions is located within the Upper Gabbroic Series, which comprises rocks heterogeneous in texture and composition. The highest grade of 10 to 50 g/t PGEs is confined primarily to chromitiferous taxitic gabbrodolerite, which forms irregular lens- and vein-like bodies that interfinger with contact gabbrodolerite, intrusion breccia, leucogabbro, and gabbrodolerite variably enriched in olivine, from olivine free up to picritic compositions. The abundant amygdules and pegmatoidal textures in Upper Gabbroic Series taxitic rocks, as well as the high enrichment of halogen in minerals (e.g., ≤4.6 wt % Cl in apatite), indicate a higher volatile content of the local magma compared to the magma that precipitated the Main Series. The observed diversity in spinel compositions, which evolve from chromite to Cr magnetite as well as toward hercynite, titanomagnetite, and ulvöspinel, is also indicative of crystallization from a fluid-saturated mush that subsequently reacted, to varying degrees, with contaminated trapped melt and immiscible fluid. The high PGE/S ratio is a primary feature of this mineralization style, albeit the ratio partly increased during sulfide replacement and resorption. The PGE tenor of bulk sulfides calculated as ΣPGE (g/t) in 100% sulfides exceeds 160 and may reach up to 1,400 to 2,500 in low-S ores (0.2–3 wt % S), whereas the value does not exceed 42 in the Talnakh disseminated ore and ranges from 35 to 120 in the Norilsk disseminated ore (1–10 wt % S). Several PGE peaks in the vertical sections correlate well with Cu, Ni, S, and Cr peaks, as well as with observed elevated proportion of amygdules. Low-sulfide ores are composed of two primary sulfide assemblages of pyrrhotite + pentlandite + chalcopyrite and pentlandite + pyrrhotite. The primary sulfides are depleted in the heavier 34S isotope relative to sulfides of the corresponded main orebodies (e.g., mean δ34S = 8.9‰ versus δ34S = 12.3‰, respectively, in the Kharaelakh intrusion). A secondary pyrite + millerite + chalcopyrite assemblage has isotope composition enriched in 34S by 2 to 6‰ δ34S with respect to primary sulfides. The directly measured PGE content in sulfides (e.g., 11–2,274 g/t Pd in pentlandite and 0.10–33.3 g/t Rh in pyrrhotite) is within the range of the typical Norilsk-type magmatic sulfide compositions. The textural setting and diversity of platinum group minerals (PGMs) favor the hypothesis of fluid-controlled crystallization. However, the distinct PGM assemblages in Norilsk 1 and Talnakh-Kharaelakh low-sulfide ores are comparable with those of the corresponding presumably magmatic disseminated and massive orebodies. The most remarkable characteristic is the widespread Pt-Fe alloys in Norilsk 1 and their absence in Talnakh-Kharaelakh, which is interpreted to reflect better preservation of the high-temperature PGMs in Norilsk 1 in contrast to their substantial replacement in more oxidized fluid-enriched environments in Talnakh-Kharaelakh.


Sign in / Sign up

Export Citation Format

Share Document