ALLUVIAL AND ELUVIAL PLATINUM-GROUP MINERALS FROM THE BUSHVELD COMPLEX, SOUTH AFRICA

2014 ◽  
Vol 117 (2) ◽  
pp. 255-274 ◽  
Author(s):  
T. OBERTHUR ◽  
T. W. WEISER ◽  
F. MELCHER
2004 ◽  
Vol 42 (2) ◽  
pp. 563-582 ◽  
Author(s):  
T. Oberthur ◽  
F. Melcher ◽  
L. Gast ◽  
C. Wohrl ◽  
J. Lodziak

2021 ◽  
Vol 59 (6) ◽  
pp. 1833-1863
Author(s):  
Andrew M. McDonald ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
Kirk C. Ross ◽  
Doreen E. Ames ◽  
...  

ABSTRACT Oberthürite, Rh3(Ni,Fe)32S32, and torryweiserite, Rh5Ni10S16, are two new platinum-group minerals discovered in a heavy-mineral concentrate from the Marathon deposit, Coldwell Complex, Ontario, Canada. Oberthürite is cubic, space group , with a 10.066(5) Å, V 1019.9(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.06(100)(311), 2.929(18)(222), 1.9518(39)(115,333), 1.7921(74)(440), 1.3184(15)(137,355) and 1.0312(30)(448). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite–ferhodsite), kotulskite, and mertieite-II, and the base-metal sulfides, chalcopyrite, bornite, millerite, and Rh-bearing pentlandite. Grains of oberthürite are up to 100 × 100 μm and the mineral commonly develops in larger composites with coldwellite, isoferroplatinum, zvyagintsevite, Rh-bearing pentlandite, and torryweiserite. The mineral is creamy brown compared to coldwellite and bornite, white when compared to torryweiserite, and gray when compared chalcopyrite and millerite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 36.2 (470 nm), 39.1 (546 nm), 40.5 (589 nm), and 42.3 (650 nm). The calculated density is 5.195 g/cm3, determined using the empirical formula and the unit-cell parameter from the refined crystal structure. The average result (n = 11) using energy-dispersive spectrometry is: Rh 10.22, Ni 38.83, Fe 16.54, Co 4.12, Cu 0.23 S 32.36, total 100.30 wt.%, which corresponds to (Rh2Ni0.67Fe0.33)Σ3.00(Ni19.30Fe9.09Co2.22Rh1.16Cu0.12)∑31.89S32.11, based on 67 apfu and crystallochemical considerations, or ideally, Rh3Ni32S32. The name is for Dr. Thomas Oberthür, a well-known researcher on alluvial platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Torryweiserite is rhombohedral, space group , with a 7.060(1), c 34.271(7) Å, V 1479.3(1), Z = 3. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.080(33)(021), 3.029(58)(116,0110), 1.9329(30)(036,1115,1210), 1.7797(100)(220,0216), 1.2512(49)(0416), and 1.0226(35)(060,2416,0232). Associated minerals are the same as for oberthürite. The mineral is slightly bluish compared to oberthürite, gray when compared to chalcopyrite, zvyagintsevite, and keithconnite, and pale creamy brown when compared to bornite and coldwellite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 34.7 (470 nm), 34.4 (546 nm), 33.8 (589 nm), and 33.8 (650 nm). The calculated density is 5.555 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 10) using wavelength-dispersive spectrometry is: Rh 28.02, Pt 2.56, Ir 1.98, Ru 0.10, Os 0.10, Ni 17.09, Fe 9.76, Cu 7.38, Co 1.77 S 30.97, total 99.73 wt.%, which corresponds to (Rh4.50Pt0.22Ir0.17Ni0.08Ru0.02Os0.01)∑5.00(Ni4.73Fe2.89Cu1.92Co0.50)Σ10.04S15.96, based on 31 apfu and crystallochemical considerations, or ideally Rh5Ni10S16. The name is for Dr. Thorolf (‘Torry') W. Weiser, a well-known researcher on platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Both minerals have crystal structures similar to those of pentlandite and related minerals: oberthürite has two metal sites that are split relative to that in pentlandite, and torryweiserite has a layered structure, comparable, but distinct, to that developed along [111] in pentlandite. Oberthürite and torryweiserite are thought to develop at ∼ 500 °C under conditions of moderate fS2, through ordering of Rh-Ni-S nanoparticles in precursor Rh-bearing pentlandite during cooling. The paragenetic sequence of the associated Rh-bearing minerals is: Rh-bearing pentlandite → oberthürite → torryweiserite → ferhodsite-series minerals, reflecting a relative increase in Rh concentration with time. The final step, involving the formation of rhodsite-series minerals, was driven via by the oxidation of Fe2+ → Fe3+ and subsequent preferential removal of Fe3+, similar to the process involved in the conversion of pentlandite to violarite. Summary comments are made on the occurrence and distribution of Rh, minerals known to have Rh-dominant chemistries, the potential existence of both Rh3+ and Rh2+, and the crystallochemical factors influencing accommodation of Rh in minerals.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 581 ◽  
Author(s):  
Thomas Oberthür

Diverse studies were performed in order to investigate the behavior of the platinum-group minerals (PGM) in the weathering cycle in the Bushveld Complex of South Africa and the Great Dyke of Zimbabwe. Samples were obtained underground, from core, in surface outcrops, and from alluvial sediments in rivers draining the intrusions. The investigations applied conventional mineralogical methods (reflected light microscopy) complemented by modern techniques (scanning electron microscopy (SEM), mineral liberation analysis (MLA), electron-probe microanalysis (EPMA), and LA-ICPMS analysis). This review aims at combining the findings to a coherent model also with respect to the debate regarding allogenic versus authigenic origin of placer PGM. In the pristine sulfide ores, the PGE are present as discrete PGM, dominantly PGE-bismuthotellurides, -sulfides, -arsenides, -sulfarsenides, and -alloys, and substantial though variable proportions of Pd and Rh are hosted in pentlandite. Pt–Fe alloys, sperrylite, and most PGE-sulfides survive the weathering of the ores, whereas the base metal sulfides and the (Pt,Pd)-bismuthotellurides are destroyed, and ill-defined (Pt,Pd)-oxides or -hydroxides develop. In addition, elevated contents of Pt and Pd are located in Fe/Mn/Co-oxides/hydroxides and smectites. In the placers, the PGE-sulfides experience further modification, whereas sperrylite largely remains a stable phase, and grains of Pt–Fe alloys and native Pt increase in relative proportion. In the Bushveld/Great Dyke case, the main impact of weathering on the PGM assemblages is destruction of the unstable PGM and PGE-carriers of the pristine ores and of the intermediate products of the oxidized ores. Dissolution and redistribution of PGE is taking place, however, the newly-formed products are thin films, nano-sized particles, small crystallites, or rarely µm-sized grains primarily on substrates of precursor detrital/allogenic PGM grains, and they are of subordinate significance. In the Bushveld/Great Dyke scenario, and in all probability universally, authigenic growth and formation of discrete, larger PGM crystals or nuggets in the supergene environment plays no substantial role, and any proof of PGM “neoformation” in a grand style is missing. The final PGM suite which survived the weathering process en route from sulfide ores via oxidized ores into placers results from the continuous elimination of unstable PGM and the dispersion of soluble PGE. Therefore, the alluvial PGM assemblage represents a PGM rest spectrum of residual, detrital grains.


2021 ◽  
Vol 59 (6) ◽  
pp. 1381-1396
Author(s):  
Maximilian Korges ◽  
Malte Junge ◽  
Gregor Borg ◽  
Thomas Oberthür

ABSTRACT Near-surface supergene ores of the Merensky Reef in the Bushveld Complex, South Africa, contain economic grades of platinum-group elements, however, these are currently uneconomic due to low recovery rates. This is the first study that investigates the variation in platinum-group elements in pristine and supergene samples of the Merensky Reef from five drill cores from the eastern Bushveld. The samples from the Richmond and Twickenham farms show different degrees of weathering. The whole-rock platinum-group element distribution was studied by inductively coupled plasma-mass spectrometry and the platinum-group minerals were investigated by reflected-light microscopy, scanning electron microscopy, and electron microprobe analysis. In pristine (“fresh”) Merensky Reef samples, platinum-group elements occur mainly as discrete platinum-group minerals, such as platinum-group element-sulfides (cooperite–braggite) and laurite as well as subordinate platinum-group element-bismuthotellurides and platinum-group element-arsenides, and also in solid solution in sulfides (especially Pd in pentlandite). During weathering, Pd and S were removed, resulting in a platinum-group mineral mineralogy in the supergene Merensky Reef that mainly consists of relict platinum-group minerals, Pt-Fe alloys, and Pt-oxides/hydroxides. Additional proportions of platinum-group elements are hosted by Fe-hydroxides and secondary hydrosilicates (e.g., serpentine group minerals and chlorite). In supergene ores, only low recovery rates (ca. 40%) are achieved due to the polymodal and complex platinum-group element distribution. To achieve higher recovery rates for the platinum-group elements, hydrometallurgical or pyrometallurgical processing of the bulk ore would be required, which is not economically viable with existing technology.


2015 ◽  
Vol 51 (1) ◽  
pp. 71-87 ◽  
Author(s):  
Thomas Oberthür ◽  
Malte Junge ◽  
Nikolay Rudashevsky ◽  
Eveline de Meyer ◽  
Paul Gutter

2005 ◽  
Vol 43 (5) ◽  
pp. 1711-1734 ◽  
Author(s):  
F. Melcher ◽  
T. Oberthur ◽  
J. Lodziak

Sign in / Sign up

Export Citation Format

Share Document