Integration of seismic refraction tomography and electrical resistivity tomography in engineering geophysics for soil characterization

2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed J. R. Al-Heety ◽  
Zainab M. Shanshal
2019 ◽  
Vol 24 (1) ◽  
pp. 27-38
Author(s):  
B. Butchibabu ◽  
Prosanta K. Khan ◽  
P.C. Jha

Geophysical investigations were carried out for evaluation of damage and to assess the possible causes for repeated occurrence of damage at one of the buildings constructed for oil pumping in the northern part of India. Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) techniques were adopted for studying the subsurface of the area around the building with an objective of ascertaining the cause of damage. High resolution imaging was done using both the techniques in this investigation. ERT delineated the presence of low resistivity (2 ohm-m) water filled voids below the structures and mapped different subsurface layers such as sandy soil, clay and sandstone in the study area. SRT revealed P-wave velocity ( V P ) of the subsurface medium in the range of 400–3,400 m/s. Corresponding densities and S-wave velocities ( V S ) were determined based on Gardner's and Castagna's relationships. Subsequently, the V P , V S and the modulus values were used in estimating compressibility of soil and rock strata. Results showed near surface layers were characterized by high compressibility (26.673 × 10 −5 Pa −1 ), decreases with depth. This paper presents the details of the site, techniques used in the investigation and correlation of geophysical results with lithological information, and the subsequent analysis for understanding the distress in the subsurface of the study area.


2019 ◽  
Vol 265 ◽  
pp. 03005
Author(s):  
Dmitriy Gorbach ◽  
Valeriya Yakimenko ◽  
Olga Konovalova

The paper reviews methods of engineering geophysics which can be applied to sections of railway tracks. The method of electrical resistivity tomography is used to study the properties of the geological situation under an engineering structure. In the course of practical work, two-dimensional geoelectric sections were obtained. Interpretation of the sections allowed to understand the structure of the near-surface zone.


Sign in / Sign up

Export Citation Format

Share Document