weak zone
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 46)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 1 (2) ◽  
pp. 49-62
Author(s):  
Babatunde A. Adebo ◽  
Oladipupo Emmanuel Makinde ◽  
Stephen Olubusola Ilugbo

This research was carried out within Institute of Agriculture Research and Training Moor Plantation Ibadan, Southwestern Nigeria, with the aim to ascertain suitability of the proposed site for building construction and usage. The geophysical investigation involved three electrical resistivity techniques; Vertical Electrical Sounding (VES) using the Schlumberger configuration, 2D ERT and 2-D electrical imaging using Dipole-dipole electrode configuration. Two traverses were established E–W direction cutting across geologic strike with a distance of 80 m and of varying inter-traverse spacing. Eight (8) VES stations were occupied covering the entire study area for layer stratification and geoelectric parameters. The results were qualitatively and quantitatively interpreted and are presented as sounding curves and geoelectric sections. The 2-D imaging gave information on the subsurface characteristic in the area with generally low apparent resistivity indicating low competence material. The results obtained from the VES delineate three geoelectric units which comprise of the topsoil, weathered layer and fresh basement. The results from the VES were used to determine the second order parameters. The entire results correlate well with one another showing that all the techniques used were complemented. This study has further justified the need for geophysical site investigation as pre-condition before any construction to avoid problems of differential settlement. In determining of foundation material, topography elevation, clay content and the depth of weak zones should be put into consideration, since the depth of the weak zone is appreciably high.


2021 ◽  
Vol 83 (11) ◽  
Author(s):  
Cristian Montanaro ◽  
Anette Kærgaard Mortensen ◽  
Tobias B. Weisenberger ◽  
Donald B. Dingwell ◽  
Bettina Scheu

AbstractKrafla central volcano in Iceland has experienced numerous basaltic fissure eruptions through its history, the most recent examples being the Mývatn (1724‒1729) and Krafla Fires (1975–1984). The Mývatn Fires opened with a steam-driven eruption that produced the Víti crater. A magmatic intrusion has been inferred as the trigger perturbing the geothermal field hosting Víti, but the cause(s) of the explosive response remain uncertain. Here, we present a detailed stratigraphic reconstruction of the breccia erupted from Víti crater, characterize the lithologies involved in the explosions, reconstruct the pre-eruptive setting, fingerprint the eruption trigger and source depth, and reveal the eruption mechanisms. Our results suggest that the Víti eruption can be classified as a magmatic-hydrothermal type and that it was a complex event with three eruption phases. The injection of rhyolite below a pre-existing convecting hydrothermal system likely triggered the Víti eruption. Heating and pressurization of shallow geothermal fluid initiated disruption of a scoria cone “cap” via an initial series of small explosions involving a pre-existing altered weak zone, with ejection of fragments from at least 60-m depth. This event was superseded by larger, broader, and dominantly shallow explosions (~ 200 m depth) driven by decompression of hydrothermal fluids within highly porous, poorly compacted tuffaceous hyaloclastite. This second phase was triggered when pressurized fluids broke through the scoria cone complex “cap”. At the same time, deep-rooted explosions (~ 1-km depth) began to feed the eruption with large inputs of fragmented rhyolitic juvenile and host rock from a deeper zone. Shallow explosions enlarging the crater dominated the final phase. Our results indicate that at Krafla, as in similar geological contexts, shallow and thin hyaloclastite sequences hosting hot geothermal fluids and capped by low-permeability lithologies (e.g. altered scoria cone complex and/or massive, thick lava flow sequence) are susceptible to explosive failure in the case of shallow magmatic intrusion(s).


2021 ◽  
Vol 9 ◽  
Author(s):  
Katharina A. Unger Moreno ◽  
Janis Thal ◽  
Wolfgang Bach ◽  
Christoph Beier ◽  
Karsten M. Haase

The formation of isolated seamounts distant from active plate boundaries and mantle plumes remains unsolved. The solitary intraplate volcano Vesteris Seamount is located in the Central Greenland Basin and rises ∼3,000 m above the seafloor with a total eruptive volume of ∼800 km3. Here, we present a new high-resolution bathymetry of Vesteris Seamount and a detailed raster terrain analysis, distinguishing cones, irregular volcanic ridges, volcanic debris fans, U-shaped channels and lava flows. The slope angles, ruggedness index and slope direction were combined with backscatter images to aid geologic interpretation. The new data show that the entire structure is a northeast to southwest elongated stellar-shaped seamount with an elongated, narrow summit surrounded by irregular volcanic ridges, separated by volcanic debris fans. Whole-rock geochemical data of 78 lava samples form tight liquid lines of descent with MgO concentrations ranging from 12.6 to 0.1 wt%, implying that all lavas evolved from a similar parental magma composition. Video footage from Remotely Operated Vehicle (ROV) dives shows abundant pyroclastic and hyaloclastite deposits on the summit and on the upper flanks, whereas lavas are restricted to flank cones. The seamount likely formed above a weak zone of the lithosphere possibly related to initial rifting parallel to the nearby Mohns Ridge, but the local stress field increasingly affected the structure of the volcano as it grew larger. Thus, we conclude that the evolution of Vesteris Seamount reflects the transition from deep, regional lithospheric stresses in the older structures to shallower, local stresses within the younger volcanic structures similar to other oceanic intraplate volcanoes. Our study shows how the combination of bathymetric, visual and geochemical data can be used to decipher the geological evolution of oceanic intraplate volcanoes.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2625
Author(s):  
Yuqiong He ◽  
Rong Sun ◽  
Zemin Xu ◽  
Weijia Tang

This study aims to analyze the groundwater flow changes caused by rainfall and its influence on slope stability. Taking the slope in Dingjiafen, Chuxiong, Yunnan, China as the study area, the study monitored the data of rainfall and drew upon the calculation module of ArcGIS to predict the change of the groundwater flow and water level fluctuation in the soil. In this way, the visual simulation of groundwater flow distribution of the slope was realized; and the influence of groundwater flow distribution caused by rainfall seepage on the slope’s stability was also analyzed. The results indicate that: (1) the rainfall recharge rate is affected by the thickness of the soil layer, the slope, the rainfall intensity, and the initial water content of the soil; (2) the seepage flow of rainfall in per unit time is positively correlated with the soil layer thickness of the slope; (3) the groundwater is repeatedly raised, maintained, and dissipated by periodic rainfall which destroys the structure of the soil; and (4) the rainfall reduces the cohesion and internal friction angle of the soil resulting in the “muddy water softening effect” in the weak zone.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Jia ◽  
Xianjie Hao ◽  
Guanghui Zhao ◽  
Yubao Li ◽  
Xiaoyu Chuai ◽  
...  

The existence of large-scale weak zone will have a great adverse impact on coal mining in high confined aquifer. Taking the Wutongzhuang Coal Mine which is threatened by high-pressure water as an example, this paper studies the difference between the microseismic events before and after mining and analyzes the influence of the large size weak zone on the coal mining on the confined aquifer. The research results show that the microseismic characteristics of the large soft weak belt are small number of events, the spatial distribution of events is concentrated, and the energy level is large. The amplitude of microseismic events is higher, and the proportion of large events in microseismic events is larger than that of small events; the characteristics of microseismic events caused by mining face mining are that the number of events is more, the distribution of events is loose, the distribution of roof and floor is more, the energy level is less, the amplitude is smaller, and the proportion of small and medium events in microseismic events is larger than that of large events. Due to the joint influence of large-scale weak zone of floor and mining, the floor in the middle area of working face is affected by mining, the number of microseismic events in each aquifer increases suddenly, the karst fissures between the aquifers are further developed, and there is a trend of transfixion. Therefore, measures such as floor grouting should be taken to reinforce the large-scale weak zone before mining.


2021 ◽  
Author(s):  
Edoseghe Osagiede ◽  
Matthias Rosenau ◽  
Atle Rotevatn ◽  
Robert Gawthorpe ◽  
Christopher Jackson ◽  
...  

The factors controlling the selective reactivation of pre-existing crustal structures and strain localization process in natural rifts have been studied for decades but remain poorly understood. We present the results of surface strain analysis of a series of analogue rifting experiments designed to test the influence of the size, orientation, depth, and geometry of pre-existing crustal weak zones on strain localization and partitioning. We apply distributed basal extension to crustal-scale models that consist of a silicone weak zone embedded in a quartz sand layer. We vary the size and orientation (θ-angle) of the weak zone with respect to the extension direction, reduce the thickness of the sand layer to simulate a shallow weak zone, and vary the geometry of the weak zone to reflect a range of anticlinal, either linear or curvilinear natural weak zone geometries. Our results show that at higher θ-angle (≤ 60o) both small- and large-scale weak zones localize strain into graben-bounding (oblique-) normal faults. At lower θ-angle (≤ 45o), small-scale weak zones do not localize strain effectively, unless they are shallow. We observe diffuse, second-order strike-slip internal graben structures, which are conjugate and antithetic under orthogonal and oblique extension, respectively. In general, the changing nature of the rift faults (from discrete fault planes to diffuse fault zones, from normal to oblique and strike-slip) highlights the sensitivity of rift architecture to the orientation, size, depth, and geometry of pre-existing weak zones. Our generic models are comparable to observations from many natural rift systems like the northern North Sea and East Africa, and thus have implications for understanding the role of structural inheritance in rift basins globally.


Author(s):  
A. Mikroutsikos ◽  
A. I. Theocharis ◽  
N. C. Koukouzas ◽  
I. E. Zevgolis

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2445
Author(s):  
Yandong Li ◽  
Weiwei Xing ◽  
Xiaobing Li ◽  
Bo Chen ◽  
Yingche Ma ◽  
...  

To reveal the effect of Mg treatment on the microstructure evolution behavior in the actual steel welding process, the microstructure and properties of Al-deoxidized high-strength ship plate steel with Mg addition were analyzed after double-side submerged arc welding. It was found that the Al–Mg–O + MnS inclusion formed under 26 ppm Mg treatment could promote acicular ferrite (AF) nucleation in the coarse-grained heat-affected zone (CGHAZ) and inhibit the formation of widmanstätten ferrite and coarse grain boundary ferrite. In the fine-grained heat-affected zone (FGHAZ) and intercritical heat-affected zone (ICHAZ), polygonal ferrite and pearlite were dominant. Al–Mg–O+MnS cannot play a role in inducing AF, but the grain size of ferrite was refined by Mg addition. The impact toughness in HAZ of the Mg-added steel was higher than that of Mg-free steel. With the heat-input rising from 29.55 to 44.11 kJ/cm, it remained relatively stable in Mg-treated steel. From the fusion line to the base metal, the micro-hardness of the fusion zone, CGHAZ, ICHAZ and FGHAZ decreased to some extent after Mg addition, which means the cold cracking tendency in the welding weak zone could be reduced. Finally, the mechanisms of Mg-containing inclusion-induced AF were also systematically discussed.


Author(s):  
Zhenhua Xue ◽  
Wei Lin ◽  
Yang Chu ◽  
Michel Faure ◽  
Yan Chen ◽  
...  

The Longmenshan Thrust Belt in Eastern Tibet resulted from a Mesozoic orogeny and Cenozoic reworking. It is generally believed that the Cenozoic tectonics along the Longmenshan Thrust Belt are mostly inherited from the Mesozoic. Reconstructing the Mesozoic tectonics of the Longmenshan Thrust Belt is therefore important for understanding its evolutionary history. On the basis of detailed structural analysis, we recognized a Main Central Boundary that divides the Longmenshan Thrust Belt into a Southeastern Zone and a Northwestern Zone. Both zones underwent a main D1 event characterized by D1E top-to-the-SE thrusting in the Southeastern Zone and D1W top-to-the-NW/N thrusting in the Northwestern Zone. In the Southeastern Zone, a D2 top-to-the-NW/N normal faulting that cuts the D1E structures is developed along the NW boundary of the basement complexes. Newly obtained and previous geochronological data indicate that the D1E and D1W events occurred synchronously at ca. 224−219 Ma, and the D2 top-to-the-NW/N normal faulting was episodically activated at ca. 166−160 Ma, 141−120 Ma, 81−47 Ma, and 27−25 Ma. Episodic and synchronously activated top-to-the-NW normal faulting and top-to-the-SE thrusting along the northwestern and southeastern boundaries of the basement complexes, respectively, leads us to propose that the basement slices were episodically imbricated to the SE during the Late Jurassic−Early Cretaceous and Late Cretaceous−earliest Paleocene. The D1 amphibolite facies metamorphic rocks above the basement complexes recorded fast exhumation during the Late Jurassic−Early Cretaceous. We propose that the early Mesozoic northwestward basement underthrusting along a crustal “weak zone” was responsible for the D1 double-vergent thrusting and amphibolite facies metamorphism. Subsequent basement-slice imbrications reworked the Longmenshan Thrust Belt and exhumed the amphibolite facies rocks. Our results highlight the importance of basement underthrusting and imbrication in the formation and reworking of the intracontinental Longmenshan Thrust Belt in Eastern Tibet.


2021 ◽  
Author(s):  
Agnieszka Ilnicka ◽  
Antonio Bottiglieri ◽  
Maja Jaskiewicz ◽  
David Kulakofsky

Abstract North Sea lithologies are often complex creating a difficult environment to deliver effective zonal isolation with standard cementing practices. With ever-present weak, fractured, and unconsolidated formations, the practice of fully lifting heavier cement up the annular gap between the formation and the casing or liner often times compromises the formation and the cement integrity. Wellbore Stabilizing (WBS) technology has been shown capable of providing zonal isolation under these difficult conditions. A cementing spacer has been developed that incorporates WBS technology providing a simple way to deliver the technology in front of any cement job, without compromising the cement integrity or requiring any last-minute slurry design or redesign. By separating the placement of the WBS technology from the cement itself, the cement slurry can be designed with the sole focus being on the interval's zonal isolation requirements. On Askepott wells in the Norwegian part of the North Sea, the Nordland weak zone is encountered after drilling out the 30-inch shoe from the Oseberg Vest H template. Cement back to the seafloor is required when cementing the 20-in casing in these 26-in. holes. Prior to the introduction of the WBS technology, pressure had been observed on the D-annulus, hinting at a lack of sufficient cement circulation. With assistance from this new WBS spacer, pressure is no longer observed in the D-annulus indicating the cement is now being circulated back inside of the conductor string. The WBS spacer has also been used successfully ahead of cement across the production interval in wells where losses were typically expected, and again full returns were observed. Normally cement spacers are utilized to separate the drilling fluid from the cement as these two fluids are normally incompatible with each other and to help push the drilling fluid out of the well so the annulus may be completely filled with cement. If the drilling fluid is not successfully displaced from the annular space, the zonal isolation intended by the primary cement job is usually less than ideal. In addition to these standard functions in preparation for cementing operations, this specialized WBS spacer also can prevent loss of cement to the formation.


Sign in / Sign up

Export Citation Format

Share Document