scholarly journals Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity

1990 ◽  
Vol 35 (3) ◽  
pp. 184-191
Author(s):  
Eduard Feireisl
1985 ◽  
Vol 40 (10) ◽  
pp. 959-967
Author(s):  
A. Salat

The equivalence of magnetic field line equations to a one-dimensional time-dependent Hamiltonian system is used to construct magnetic fields with arbitrary toroidal magnetic surfaces I = const. For this purpose Hamiltonians H which together with their invariants satisfy periodicity constraints have to be known. The choice of H fixes the rotational transform η(I). Arbitrary axisymmetric fields, and nonaxisymmetric fields with constant η(I) are considered in detail.Configurations with coinciding magnetic and current density surfaces are obtained. The approach used is not well suited, however, to satisfying the additional MHD equilibrium condition of constant pressure on magnetic surfaces.


1993 ◽  
Vol 50 (1) ◽  
pp. 51-70 ◽  
Author(s):  
D. Zoler ◽  
S. Cuperman ◽  
J. Ashkenazy ◽  
M. Caner ◽  
Z. Kaplan

A time-dependent quasi-one-dimensional model is developed for studying high- pressure discharges in ablative capillaries used, for example, as plasma sources in electrothermal launchers. The main features of the model are (i) consideration of ablation effects in each of the continuity, momentum and energy equations; (ii) use of a non-ideal equation of state; and (iii) consideration of space- and time-dependent ionization.


2010 ◽  
Vol 12 (01) ◽  
pp. 85-106 ◽  
Author(s):  
S. N. ANTONTSEV ◽  
J. I. DÍAZ

We consider a general class of one-dimensional parabolic systems, mainly coupled in the diffusion term, which, in fact, can be of the degenerate type. We derive some new L1-gradient type estimates for its solutions which are uniform in the sense that they do not depend on the coefficients nor on the size of the spatial domain. We also give some applications of such estimates to gas dynamics, filtration problems, a p-Laplacian parabolic type equation and some first order systems of Hamilton–Jacobi or conservation laws type.


Sign in / Sign up

Export Citation Format

Share Document