Production Data Analysis of Coalbed-Methane Wells

2008 ◽  
Vol 11 (02) ◽  
pp. 311-325 ◽  
Author(s):  
Christopher R. Clarkson ◽  
Colin L. Jordan ◽  
Roger R. Gierhart ◽  
John P. Seidle

Summary Recent advances in production data analysis (PDA) techniques have greatly assisted engineers in extracting meaningful reservoir and stimulation information from well-production and flowing-pressure data. Application of these techniques to coalbed-methane (CBM) reservoirs requires the unique coal storage and transport properties to be accounted for. In recent work, the authors [ex. Clarkson et al. (2007a) and Jordan et al. (2006)] and others [ex. Gerami et al. (2007)] have demonstrated how new techniques such as the flowing material balance (FMB) and production type curves may be adapted to account for CBM storage mechanisms (i.e., adsorption), but, to date, the focus has been on relatively simple CBM reservoir behavior such as single-phase (gas) reservoirs with static effective permeability. The major contribution of the current work is the adaptation of modern PDA techniques (by use of modified material balance time/pseudotime and pseudopressure definitions) to analyze producing wells completed in CBM reservoirs exhibiting several possible flow characteristics: single-phase flow of gas in dry CBM reservoirs, single-phase flow of water (in undersaturated reservoirs), and two-phase (gas and water) flow (in saturated reservoirs). The latter reservoir type commonly exhibits effective permeability changes during depletion (because of relative and/or absolute permeability changes) and changing gas composition caused by relative adsorption effects, both of which have been accounted for in the current work. Specifically, the FMB technique is modified to include several complex CBM reservoir characteristics, and production type curves are applied to some scenarios. Although dry-CBM-well analysis was covered previously [ex. Clarkson et al. (2007a)], we will also discuss FMB development in these reservoirs for completeness. Several synthetic and field examples are given to demonstrate how FMB, type-curve analysis, and analytical simulation can be used in parallel to provide a particularly useful data-analysis toolset and workflow. These techniques were used successfully to extract quantitative reservoir information from single- and two-phase CBM-simulated and field-production pressure data. The PDA techniques developed for two-phase CBM require further evaluation, however.

Author(s):  
Suizheng Qiu ◽  
Minoru Takahashi ◽  
Guanghui Su ◽  
Dounan Jia

Water single-phase and nucleate boiling heat transfer were experimentally investigated in vertical annuli with narrow gaps. The experimental data about water single-phase flow and boiling two-phase flow heat transfer in narrow annular channel were accumulated by two test sections with the narrow gaps of 1.0mm and 1.5mm. Empirical correlations to predict the heat transfer of the single-phase flow and boiling two-phase flow in the narrow annular channel were obtained, which were arranged in the forms of the Dittus-Boelter for heat transfer coefficients in a single-phase flow and the Jens-Lottes formula for a boiling two-phase flow in normal tubes, respectively. The mechanism of the difference between the normal channel and narrow annular channel were also explored. From experimental results, it was found that the turbulent heat transfer coefficients in narrow gaps are nearly the same to the normal channel in the experimental range, and the transition Reynolds number from a laminar flow to a turbulent flow in narrow annuli was much lower than that in normal channel, whereas the boiling heat transfer in narrow annular gap was greatly enhanced compared with the normal channel.


Author(s):  
Ashish Kotwal ◽  
Che-Hao Yang ◽  
Clement Tang

The current study shows computational and experimental analysis of multiphase flows (gas-liquid two-phase flow) in channels with sudden area change. Four test sections used for sudden contraction and expansion of area in experiments and computational analysis. These are 0.5–0.375, 0.5–0.315, 0.5–0.19, 0.5–0.14, inversely true for expansion channels. Liquid Flow rates ranging from 0.005 kg/s to 0.03 kg/s employed, while gas flow rates ranging from 0.00049 kg/s to 0.029 kg/s implemented. First, single-phase flow consists of only water, and second two-phase Nitrogen-Water mixture flow analyzed experimentally and computationally. For Single-phase flow, two mathematical models used for comparison: the two transport equations k-epsilon turbulence model (K-Epsilon), and the five transport equations Reynolds stress turbulence interaction model (RSM). A Eulerian-Eulerian multiphase approach and the RSM mathematical model developed for two-phase gas-liquid flows based on current experimental data. As area changes, the pressure drop observed, which is directly proportional to the Reynolds number. The computational analysis can show precise prediction and a good agreement with experimental data when area ratio and pressure differences are smaller for laminar and turbulent flows in circular geometries. During two-phase flows, the pressure drop generated shows reasonable dependence on void fraction parameter, regardless of numerical analysis and experimental analysis.


Author(s):  
Toshimichi Arai ◽  
Naoki Kudo ◽  
Tsuneaki Ishima ◽  
Ismail M. Youssef ◽  
Tomio Obokata ◽  
...  

Characteristics on particle motion in a liquid-solid two-phase jet flow were studied in the paper. The water jet including glass particle of 389 μm in mean diameter was injected into water bath. The experimental conditions were 0.21% of initial particle volume ratio, 5mm in pipe diameter and 1.84 m/s of mean velocity on outlet of the jet. A laser Doppler anemometer (LDA) with size discrimination was applied for measuring the time serious velocities of the single-phase flow, particle and water phase flow. A particle image velocimetry (PIV) was also applied in the two-phase flow. The normal PIV method can hardly measure the particle size and perform the particle size discrimination. In the experiment, using the gray scales related with the scattering light intensity, measuring method with size discrimination in two-phase flow was carried out. The experimental results show less difference between velocities of single-phase flow and water-phase flow under this low particle volume ratio condition. Particles have the relative motion with the water-phase and large rms velocity. The PIV used in this experiment, which is called multi-intensity-layer-PIV: MILP, can measure water-phase velocity with good accuracy.


Author(s):  
Yuichi Murai ◽  
Toshio Sasaki ◽  
Masa-aki Ishikawa ◽  
Fujio Yamamoto

This paper concerns with flow visualization and image measurement of bubbly flows around various shapes of cylinders. A coaxial confined double rectangular chamber is constructed in order to provide a wide two-dimensional uniform bubble distribution upstream of the obstacle. The experiment shows that a wide two-phase convection is induced around the obstacle, though such an effect is not observed in research on the single-phase flow around objects. The spatial scale of the two-phase convection depends sensitively on the shape of the obstacle. Dense arrangement of cylinders is also investigated to find the interaction among the convection. The measurement results of void fraction, bubble velocity and liquid phase flow, which are obtained by image processing including particle tracking velocimetry (PTV), explore the detailed mechanism of generating the convection.


Author(s):  
Bjo¨rn Palm

The purpose of the present paper is to present research and development within the area of mini- and micro channels in Sweden. A review is made of the historical development of highly compact heat exchangers within the country, starting with plate heat exchangers. The main focus is on the research performed at the Royal Institute of Technology, where mini-channel research has been going on since more than ten years. Single-phase flow as well as two-phase flow is treated, both in single channels and in full-size heat exchangers with multiple parallel channels.


Author(s):  
Jiang Nai-bin ◽  
Gao Li-xia ◽  
Huang Xuan ◽  
Zang Feng-gang ◽  
Xiong Fu-rui

In steam generators and other heat exchangers, there are a lot of tube bundles subjected to two-phase cross-flow. The fluctuating pressure on tube bundle caused by turbulence can induce structural vibration. The experimental data from a U-tube bundle of steam generator in air-water flow loop are analyzed in this work. The different upper bounds of buffeting force are used to calculate the turbulence buffeting response of U-tubes, and the calculation results are compared with the experimental results. The upper bounds of buffeting force include one upper bound based on single-phase flow, and two upper bounds based on two-phase flow. It is shown that the upper bound based on single-phase flow seriously underestimated the turbulence excitation, the calculated vibration response is much less than the experimental measurement. On the other hand, the vibration response results calculated with the upper bounds based on two-phase flow are closer to the measured results under most circumstances.


Author(s):  
Sira Saisorn ◽  
Somchai Wongwises ◽  
Piyawat Kuaseng ◽  
Chompunut Nuibutr ◽  
Wattana Chanphan

The investigations of heat transfer and fluid flow characteristics of non-boiling air-water flow in micro-channels are experimentally studied. The gas-liquid mixture from y-shape mixer is forced to flow in the 21 parallel rectangular microchannels with 40 mm long in the flow direction. Each channel has a width and a depth of 0.45 and 0.41 mm, respectively. Flow visualization is feasible by incorporating the stereozoom microscope into the camera system and different flow patterns are recorded. The experiments are performed under low superficial velocities. Two-phase heat transfer gives better results when compared with the single-phase flow. It is found from the experiment that heat transfer enhancement up to 53% is obtained over the single-phase flow. Also, the change in the configuration of the inlet plenum can result in the different two-phase flow mechanisms.


1984 ◽  
Vol 24 (06) ◽  
pp. 697-706 ◽  
Author(s):  
A.T. Watson ◽  
G.R. Gavalas ◽  
J.H. Seinfeld

Abstract Since the number of parameters to be estimated in a reservoir history match is potentially quite large, it is important to determine which parameters can be estimated with reasonable accuracy from the available data. This aspect can be called determining the identifiability of the parameters. The identifiability of porosity and absolute parameters. The identifiability of porosity and absolute and relative permeabilities on the basis of flow and pressure data in a two-phase (oil/water) reservoir is pressure data in a two-phase (oil/water) reservoir is considered. The question posed is: How accurately can one expect to estimate spatially variable porosity and absolute permeability and relative permeabilities given typical permeability and relative permeabilities given typical production and pressure data" To gain insight into this production and pressure data" To gain insight into this question, analytical solutions for pressure and saturation in a one-dimensional (1D) waterflood are used. The following, conclusions are obtained.Only the average value of the porosity can be determined on the basis of water/oil flow measurements.The permeability distribution can be determined from pressure drop data with an accuracy depending on the pressure drop data with an accuracy depending on the mobility ratio.Exponents in a power function representation of the relative permeabilities can he determined from WOR data alone but not nearly so accurately as when pressure drop and flow data are used simultaneously. Introduction The utility of reservoir simulation in predicting reservoir behavior is limited by the accuracy with which reservoir properties can be estimated. Because of the high costs properties can be estimated. Because of the high costs associated with coring analysis, reservoir engineers must rely, on history matching as a means of estimating reservoir properties. In this process a history match is carried out by choosing the reservoir properties as those that result in simulated well pressure and flow data that match as closely as possible those measured during production. In general, reservoir properties at each gridblock in the simulator represent the unknown values to be determined. Although there are efficient methods for estimating such a large number of unknowns, it has long been recognized from the results of single phase history matching exercises that many different sets of parameter values may yield a nearly identical match of observed and predicted pressures. The conventional single phase predicted pressures. The conventional single phase history matching problem is in fact a mathematically illposed problem, which explains its nonunique behavior. Such a situation is, in short, the result of the large number of unknowns to be estimated on the basis of the available data and the lack of sensitivity of the simulator solutions to the parameters. Because of this lack of sensitivity, the need to reduce the number of unknown Parameters or to introduce some additional constraints, such as "smoothness" of the estimated parameters, has been recognized. A problem as important as that of choosing which minimization method to employ in history matching is that of choosing, on the basis of the available well data. which properties actually should be estimated. This selection properties actually should be estimated. This selection depends on the relationship of the unknown parameters to the simulated well data. Ideally one would want to knowwhich parameters can be determined uniquely if the measurements were exact, andgiven the expected level of error in the measurements, how accurately we can expect to be able to estimate the parameters. The first question, that of establishing uniqueness of the estimated parameters, is notoriously difficult to answer, and for a parameters, is notoriously difficult to answer, and for a problem as complicated as reservoir history matching, problem as complicated as reservoir history matching, there are virtually no general results available that allow one to establish uniqueness for permeability or porosity. Thus, it is not possible in general to base our choice of which parameters to estimate on rigorous mathematical uniqueness results. In lieu of an answer to Question 1, the selection of parameters to be estimated can be based on Question 2, parameters to be estimated can be based on Question 2, which is amenable to theoretical analysis. If the expected errors in estimation of any of the parameters, or any linear combination of the parameters, are extremely large, then that parameter or set of parameters can be judged as not identifiable. In such a case, steps may be taken to reduce the number of unknown parameters. In summary, the reservoir history matching problem is a difficult parameter estimation problem, and understanding the relationship between the unknown parameters and the measured data is essential to obtaining meaningful estimates of the reservoir properties. Quantitative studies regarding the accuracy of estimates for single-phase history matching problems have been reported by Shah et al. and Dogru et al. Shah et al,. investigated the optimal level of zonation for use with 1D single-phase (oil) situations. SPEJ P. 697


Sign in / Sign up

Export Citation Format

Share Document