Improving In-situ Horizontal Stress Profile Accuracy Using Multi-Mode Sonic Measurements: A Case Study in a Deep Tight Gas Well in Saudi Arabia

2011 ◽  
Author(s):  
Luo Mao Lin ◽  
Hao Jie Wu ◽  
Mohammad Ahmed Mohiuddin
2013 ◽  
Author(s):  
Josef R Shaoul ◽  
Jason J. Park ◽  
Winston J. Spitzer ◽  
Maurice Eaton
Keyword(s):  
Gas Well ◽  

AAPG Bulletin ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 459-492 ◽  
Author(s):  
Mohammed S. Ameen ◽  
Keith MacPherson ◽  
Maher I. Al-Marhoon ◽  
Zillur Rahim

2015 ◽  
Vol 55 (2) ◽  
pp. 429
Author(s):  
Marcel Croon ◽  
Joshua Bluett ◽  
Luke Titus ◽  
Raymond Johnson

The Glyde–1 and Glyde Sidetrack–1 wells were drilled by Armour Energy in the Glyde Sub-basin of the McArthur Basin, NT, Australia in August 2012. This program was to evaluate the unconventional hydrocarbon potential of the Barney Creek Shale source rock and the conventional potential of the Coxco Dolomite of the McArthur Group. The Glyde wells discovered gas in both formations. Transtensional faults in this region allowed to form a series of fault-bounded depocentres. The target gas source of the Glyde discovery is located in 1640 Ma organic-rich black shales of the Barney Creek Formation. Weatherford was contracted to acquire both vertical and lateral advanced log suites and perform subsequent log interpretation to constrain the in situ minimum and maximum horizontal stress regimes to assist with maximising gas production from future lateral placement pilot programs in the Coxco Hydrothermal Dolomite (HTD) Play. Two stratigraphic and structural domains were defined by the observed features in the image log data; a dolostone dominated, fractured strata below an erosional surface. Above this stratigraphic timeline is a monotonous package of laminated, lower-energy Barney Creek Formation sediments. Observed changes in azimuths and dips of the measured beddings suggest a phase of compression after deposition of the Barney Creek Formation, resulting in gentle folding of the formations. The porous gas-charged HTD play is drilled in top of the anticline, which is further characterised by a significant number of conductive fractures, likely indicative of open fractures.


Author(s):  
Rajeev Ranjan Kumar ◽  
Menno Mathieu Molenaar ◽  
Surej Kumar Subbiah

AbstractThe horizontal stress profile plays an important role, extending from wellbore stability analysis to well completion optimization of tight gas reservoirs. When considering exploration fields with planned wells being drilled to 5500-m TVD, it is imperative to quantify tectonic effects at the well location. In addition, accurately predicting stress profile and fracture initiation values in vertical wells is required to identify sweet zones and barriers. This paper presents the details of a pre-fracture geomechanical model using breakouts and advanced acoustic data for post-fracture analysis. The analysis contains a history match of fracture initiation pressure, which consider the effects of filter cake around permeable sand, variation in tensile strength, and quantification of horizontal stress contrast in the different fields. Overall, three reservoirs have been analyzed, each containing more than eight wells with operations history. Core tests were used to calibrate dynamic-to-static rock elastic and mechanical properties, both of which reduced uncertainty in the model. The poroelastic horizontal strain method was used to build a continuous stress profile. Typically, the rock fabric found in the cores, images, and anisotropy data from the three reservoirs is different and required various dynamic-to static conversions. The Aeolian deposits-based reservoir has a wide variation in horizontal stress, and fracture height is typically governed by the stiffness of the layers. The lower permeability zones have relatively higher tensile strength, compared with higher permeability zones leading to relatively higher fracture initiation values. Overall, the ratio of maximum horizontal stress-to-minimum horizontal stress varies between 1.20 and 1.28 based on post-fracture analysis, which correlates well with regional tectonics and structural data. Depending on lithological variation and structure changes, the horizontal strain component varies at the layer level within regional tectonics. Inversion of fracturing data helped to constrain horizontal strain and stress variations in the field.


Sign in / Sign up

Export Citation Format

Share Document