Multiattribute Seismic Analysis With Fractal Dimension and 2D and 3D Continuous Wavelet Transform

2014 ◽  
Vol 17 (04) ◽  
pp. 436-443 ◽  
Author(s):  
Puneet Saraswat ◽  
Vijay Raj ◽  
Mrinal K. Sen ◽  
Arun Narayanan

Summary The 3D post-stack seismic attributes provide an intuitive and effective way of using seismic volumes for reservoir characterization and development, and further identification of exploration targets. Some of the seismic attributes can aid in the precise prediction of the geometry and heterogeneity of subsurface geological settings. These also can provide useful information on petrophysical and lithological properties when combined with well-log information. There exist numerous seismic attributes that provide a unique interpretation on some aspects of subsurface geology. Of these, the proper demarcation of structural features— such as location and edges of faults and salt domes, and their throw and extent—always has been of primary concern. In this paper, we propose new multiattribute seismic algorithms by using fractal dimension and 2D/3D continuous wavelet transform (CWT). The use of higher-dimensional wavelets incorporates information from the ensemble of traces and can correlate information between neighboring traces in seismic data. The spectral decomposition that is based on the CWT aids in resolving various features of geological interest at a particular scale or frequency, which, when rendered with fractal attribute, demarcates the boundaries between those. We apply these two algorithms separately to a seismic amplitude volume and co-render output volumes together with some weights to yield a final attribute volume incorporating information from the aforementioned algorithms. We demonstrate the efficacy of these two algorithms in terms of the resolution and proper demarcation of various geological structures on real seismic data. The application of these algorithms results in better illumination and proper demarcation of various geological features such as salt domes, channels, and faults, and it illustrates how these simple tools can help to extract detailed information from seismic data.

2014 ◽  
Vol 2 (1) ◽  
pp. SA107-SA118 ◽  
Author(s):  
Marcílio Castro de Matos ◽  
Rodrigo Penna ◽  
Paulo Johann ◽  
Kurt Marfurt

Most deconvolution algorithms try to transform the seismic wavelet into spikes by designing inverse filters that remove an estimated seismic wavelet from seismic data. We assume that seismic trace subtle discontinuities are associated with acoustic impedance contrasts and can be characterized by wavelet transform spectral ridges, also called modulus maxima lines (WTMML), allowing us to improve seismic resolution by using the wavelet transform. Specifically, we apply the complex Morlet continuous wavelet transform (CWT) to each seismic trace and compute the WTMMLs. Then, we reconstruct the seismic trace with the inverse continuous wavelet transform from the computed WTMMLs with a broader band complex Morlet wavelet than that used in the forward CWT. Because the reconstruction process preserves amplitude and phase along different scales, or frequencies, the result looks like a deconvolution method. Considering this high-resolution seismic representation as a reflectivity approximation, we estimate the relative acoustic impedance (RAI) by filtering and trace integrating it. Conventional deconvolution algorithms assume the seismic wavelet to be stochastic, while the CWT is implicitly time varying such that it can be applied to both depth and time-domain data. Using synthetic and real seismic data, we evaluated the effectiveness of the methodology on detecting seismic events associated with acoustic impedance changes. In the real data examples, time and in-depth RAI results, show good correlation with real P-impedance band-pass data computed using more rigorous commercial inversion software packages that require well logs and low-frequency velocity model information.


2019 ◽  
Vol 133 ◽  
pp. 01007
Author(s):  
Asad Taimur ◽  
Akinniyi Akinsunmade ◽  
Sylwia Tomecka-Suchon ◽  
Fahad Mehmood

Routine seismic data processing does not always meet the quantitative interpreters’ expectations especially in areas like Badin, where prospective thin bed B – sand interval is ambiguous throughout the seismic volume. Continuous Wavelet Transform (CWT) provides detailed description of seismic signal in both time and frequency without compromising on window length and a fixed time-frequency resolution over time-frequency spectrum. We present enhancement of seismic data for effective interpretation using the bandwidth extension technique. Implementing bandwidth extension, the dominant frequency increases from 18 Hz to 30 Hz and the frequency content boosted from 40 Hz to 60 Hz. Noise inclusion by the technique was suppressed by F-XY predictive filter and F-XY deconvolution with edge preserve smoothing. Phase and spectral balancing were applied to partial angle stacks to stabilize the phase rotation across the 3D survey, particularly for far offset stack. Frequency was balanced using surface consistent spectrum balancing, and subjected to trace scaling for amplitudes balance and preservation. Results of the techniques yielded unique improvement on the data resolution and subtle information about the thin sand beds were better delineated. Tuning thickness analysis reveals the usefulness of bandwidth extension, with an increase of 30% in the resolving power of thin beds.


2011 ◽  
Vol 148-149 ◽  
pp. 1365-1369
Author(s):  
Pu Hua Tang ◽  
Mu Rong Zhou ◽  
Ying Yong Bu

A classification method for underwater echo is introduced, which based on fractal theory and learning vector quantization (LVQ) neural network. The fractal dimension was extracted from the underwater echo by continuous wavelet transform. Combining with accumulative energy as input of a LVQ neural network, neural network was used to classify four kinds of underwater echo. The experimental results showed this method is effective and reliable.


Sign in / Sign up

Export Citation Format

Share Document