Use of Carbon Dioxide and Hydrocarbon Solvents During the Method of Steam-Over-Solvent Injection in Fractured Reservoirs for Heavy-Oil Recovery From Sandstones and Carbonates

2014 ◽  
Vol 17 (02) ◽  
pp. 286-301 ◽  
Author(s):  
K.. Naderi ◽  
T.. Babadagli

Summary Because of low efficiencies and the high cost of the individual injection of steam and solvent for heavy-oil recovery, their hybrid applications have gained significant attention recently. Although numerous laboratory studies exist and there are a considerable number of field projects for sandstone environments, fractured carbonates lack technologies to drain matrix oil efficiently. An alternative-method injection of solvent and steam was proposed and tested earlier (Babadagli and Al-Bahlani 2008). This process applies steam initially to condition the matrix oil for succeeding solvent injection and steam reinjection to retrieve solvent in the matrix and to recover additional upgraded oil. The present study uses carbon dioxide (CO2) as a solvent and compares it with hydrocarbon solvents in this type of application. To clarify the physics of the process and to test the applicability of the method for different reservoir and injection conditions, we conducted a series of experiments by first injecting steam, followed by CO2 injection. In the third cycle, steam was injected again to produce upgraded oil in the matrix. The experiments were performed under static conditions (soaking sand and carbonate samples in steam or CO2 chambers) at different temperatures and pressures. CO2 is shown to be a reasonable alternative for hydrocarbon solvents in such a process in terms of cost and benefits by reducing the solvent expenses, keeping the oil-production levels, and disposing of a greenhouse gas.

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1655-1668 ◽  
Author(s):  
Ali Telmadarreie ◽  
Japan J. Trivedi

Summary Carbonate reservoirs, deposited in the Western Canadian Sedimentary Basin (WCSB), hold significant reserves of heavy crude oil that can be recovered by nonthermal processes. Solvent, gas, water, and water-alternating-gas (WAG) injections are the main methods for carbonate-heavy-oil recovery in the WCSB. Because of the fractured nature of carbonate formations, many advantages of these production methods are usually in contrast with their low recovery factor. Alternative processes are therefore needed to increase oil-sweep efficiency from carbonate reservoirs. Foam/polymer-enhanced-foam (PEF) injection has gained interest in conventional heavy-oil recovery in recent times. However, the oil-recovery process by foam, especially PEF, in conjunction with solvent injection is less understood in fractured heavy-oil-carbonate reservoirs. The challenge is to understand how the combination of surfactant, gas, and polymer allows us to better access the matrix and efficiently sweep the oil. This study introduces a new approach to access the unrecovered heavy oil in fractured-carbonate reservoirs. Carbon dioxide (CO2) foam and CO2 PEF were used to decrease oil saturation after solvent injection, and their performance was compared with gas injection. A specially designed fractured micromodel was used to visualize the pore-scale phenomena during CO2-foam/PEF injection. In addition, the static bulk performances of CO2 foam/PEF were analyzed in the presence of heavy crude oil. A high-definition camera was used to capture high-quality images. The results showed that in both static and dynamic studies the PEF had high stability. Unlike CO2 PEF, CO2 foam lamella broke much faster and resulted in the collapse of the foam during heavy-oil recovery after solvent flooding. It appeared that foam played a greater role than just gas-mobility control. Foam showed outstanding improvement in heavy-oil recovery over gas injection. The presence of foam bubbles was the main reason to improve heavy-oil-sweep efficiency in heterogeneous porous media. When the foam bubbles advanced through pore throats, the local capillary number increased enough to displace the emulsified oil. PEF bubbles generated an additional force to divert surfactant/polymer into the matrix. Overall, CO2 foam and PEF remarkably increased heavy-oil recovery after solvent injection into the fractured reservoir.


Sign in / Sign up

Export Citation Format

Share Document