Estimating Long Term Well Performance in the Montney Shale Gas Reservoir

Author(s):  
Vu P. Dinh ◽  
Brad A. Gouge ◽  
Aaron White
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wuguang Li ◽  
Hong Yue ◽  
Yongpeng Sun ◽  
Yu Guo ◽  
Tianpeng Wu ◽  
...  

The implementation of horizontal wells is a key to economic development of the deep shale gas reservoir. In order to optimize the key parameters for drilling, stimulation, and the production system, the development effect of a horizontal well in deep shale gas formations was investigated from various aspects in this study. The drilling, fracturing, and production performances of this well were analyzed combining with the geological characteristics. The main technical problems and key factors that restrict the gas well performance and estimated ultimate recovery (EUR) were clarified. Through the integrated study of geology and engineering, the optimization strategies for increasing gas production and EUR are provided. The Z2 area, where the Z2-H1 well is located, has good reservoir physical properties, which bring a high drilling efficiency. However, there are still some problems during its development, such as poor fracture extension both horizontally and vertically, limited stimulated reservoir volume (SRV), rapid production declining, large water production, and serious liquid accumulation. In this study, a comprehensive approach was proposed that can improve single-well production and EUR by optimizing the target position, horizontal section length, pathway, spacing, new drilling and fracturing technology, and production system.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Huimin Wang ◽  
J. G. Wang ◽  
Feng Gao ◽  
Xiaolin Wang

A shale gas reservoir is usually hydraulically fractured to enhance its gas production. When the injection of water-based fracturing fluid is stopped, a two-phase flowback is observed at the wellbore of the shale gas reservoir. So far, how this water production affects the long-term gas recovery of this fractured shale gas reservoir has not been clear. In this paper, a two-phase flowback model is developed with multiscale diffusion mechanisms. First, a fractured gas reservoir is divided into three zones: naturally fractured zone or matrix (zone 1), stimulated reservoir volume (SRV) or fractured zone (zone 2), and hydraulic fractures (zone 3). Second, a dual-porosity model is applied to zones 1 and 2, and the macroscale two-phase flow flowback is formulated in the fracture network in zones 2 and 3. Third, the gas exchange between fractures (fracture network) and matrix in zones 1 and 2 is described by a diffusion process. The interactions between microscale gas diffusion in matrix and macroscale flow in fracture network are incorporated in zones 1 and 2. This model is validated by two sets of field data. Finally, parametric study is conducted to explore key parameters which affect the short-term and long-term gas productions. It is found that the two-phase flowback and the flow consistency between matrix and fracture network have significant influences on cumulative gas production. The multiscale diffusion mechanisms in different zones should be carefully considered in the flowback model.


2012 ◽  
Author(s):  
Chen Mingzhong ◽  
Qian Bing ◽  
Ou Zhilin ◽  
Zhang juncheng ◽  
Jiang Hai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document