Root Cause Failure Analysis as a Tool for Investigating Operational Failures: A Case Study

2015 ◽  
Author(s):  
Spencer E. Scolnick ◽  
Jonathan C. Garrett ◽  
Steven L. Griffith ◽  
Kevin K. Ward
2016 ◽  
Vol 31 (03) ◽  
pp. 219-224
Author(s):  
Spencer E. Scolnick ◽  
Jonathan C. Garrett ◽  
Steven L. Griffith ◽  
Kevin K. Ward

2017 ◽  
Author(s):  
F. W. Guerra ◽  
N. Cortina ◽  
L. Franco ◽  
E. Vera ◽  
Y. Pineda

Author(s):  
Michael Woo ◽  
Marcos Campos ◽  
Luigi Aranda

Abstract A component failure has the potential to significantly impact the cost, manufacturing schedule, and/or the perceived reliability of a system, especially if the root cause of the failure is not known. A failure analysis is often key to mitigating the effects of a componentlevel failure to a customer or a system; minimizing schedule slips, minimizing related accrued costs to the customer, and allowing for the completion of the system with confidence that the reliability of the product had not been compromised. This case study will show how a detailed and systemic failure analysis was able to determine the exact cause of failure of a multiplexer in a high-reliability system, which allowed the manufacturer to confidently proceed with production knowing that the failure was not a systemic issue, but rather that it was a random “one time” event.


Author(s):  
Zhigang Song ◽  
Jochonia Nxumalo ◽  
Manuel Villalobos ◽  
Sweta Pendyala

Abstract Pin leakage continues to be on the list of top yield detractors for microelectronics devices. It is simply manifested as elevated current with one pin or several pins during pin continuity test. Although many techniques are capable to globally localize the fault of pin leakage, root cause analysis and identification for it are still very challenging with today’s advanced failure analysis tools and techniques. It is because pin leakage can be caused by any type of defect, at any layer in the device and at any process step. This paper presents a case study to demonstrate how to combine multiple techniques to accurately identify the root cause of a pin leakage issue for a device manufactured using advanced technology node. The root cause was identified as under-etch issue during P+ implantation hard mask opening for ESD protection diode, causing P+ implantation missing, which was responsible for the nearly ohmic type pin leakage.


2021 ◽  
Author(s):  
Song Wang ◽  
Lawrence Khin Leong Lau ◽  
Wu Jun Tong ◽  
Kun An ◽  
Jiang Nan Duan ◽  
...  

Abstract This paper elucidates the importance of flow assurance transient multiphase modelling to ensure uninterrupted late life productions. This is discussed in details through the case study of shut-in and restart scenarios of a subsea gas well (namely Well A) located in South China Sea region. There were two wells (Well A and Well B) producing steadily prior to asset shut-in, as a requirement for subsea pipeline maintenance works. However, it was found that Well A failed to restart while Well B successfully resumed production after the pipeline maintenance works. Flow assurance team is called in order to understand the root cause of the failed re-start of Well A to avoid similar failure for Well B and other wells in this region. Through failure analysis of Well A, key root cause is identified and associated operating strategy is proposed for use for Well B, which is producing through the same subsea infrastructure. Transient multiphase flow assurance model including subsea Well A, subsea Well B, associated spools, subsea pipeline and subsea riser is developed and fully benchmarked against field data to ensure realistic thermohydraulics representations of the actual asset. Simulation result shows failed restart of Well A and successful restart of Well B, which fully matched with field observations. Further analysis reveals that liquid column accumulated within the wellbore of Well A associates with extra hydrostatic head which caused failed well restart. Through a series of sensitivity analysis, the possibility of successful Well A restart is investigated by manipulating topsides back pressure settings and production flowrates prior to shut-in. These serve as a methodology to systematically analyze such transient scenario and to provide basis for field operating strategy. The analysis and strategy proposed through detailed modelling and simulation serves as valuable guidance for Well B, should shut-in and restart operation is required. This study shows the importance of modelling prior to late life field operations, in order to avoid similar failed well restart, which causes significant production and financial impacts.


2014 ◽  
Vol 7 (1) ◽  
pp. 618-623 ◽  
Author(s):  
Eszter Voroshazi ◽  
Griet Uytterhoeven ◽  
Kjell Cnops ◽  
Thierry Conard ◽  
Paola Favia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document