Gaussian Process for Uncertainty Quantification of Reservoir Models

Author(s):  
Hamidreza Hamdi ◽  
Yasin Hajizadeh ◽  
Mario Costa Sousa
Author(s):  
Kevin de Vries ◽  
Anna Nikishova ◽  
Benjamin Czaja ◽  
Gábor Závodszky ◽  
Alfons G. Hoekstra

2018 ◽  
Vol 25 (1) ◽  
pp. 117-138 ◽  
Author(s):  
Lei Su ◽  
Hua-Ping Wan ◽  
You Dong ◽  
Dan M. Frangopol ◽  
Xian-Zhang Ling

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jihoon Park ◽  
Jeongwoo Jin ◽  
Jonggeun Choe

For decision making, it is crucial to have proper reservoir characterization and uncertainty assessment of reservoir performances. Since initial models constructed with limited data have high uncertainty, it is essential to integrate both static and dynamic data for reliable future predictions. Uncertainty quantification is computationally demanding because it requires a lot of iterative forward simulations and optimizations in a single history matching, and multiple realizations of reservoir models should be computed. In this paper, a methodology is proposed to rapidly quantify uncertainties by combining streamline-based inversion and distance-based clustering. A distance between each reservoir model is defined as the norm of differences of generalized travel time (GTT) vectors. Then, reservoir models are grouped according to the distances and representative models are selected from each group. Inversions are performed on the representative models instead of using all models. We use generalized travel time inversion (GTTI) for the integration of dynamic data to overcome high nonlinearity and take advantage of computational efficiency. It is verified that the proposed method gathers models with both similar dynamic responses and permeability distribution. It also assesses the uncertainty of reservoir performances reliably, while reducing the amount of calculations significantly by using the representative models.


Author(s):  
Yongxiang Hu ◽  
Zhi Li ◽  
Kangmei Li ◽  
Zhenqiang Yao

Accurate numerical modeling of laser shock processing, a typical complex physical process, is very difficult because several input parameters in the model are uncertain in a range. And numerical simulation of this high dynamic process is very computational expensive. The Bayesian Gaussian process method dealing with multivariate output is introduced to overcome these difficulties by constructing a predictive model. Experiments are performed to collect the physical data of shock indentation profiles by varying laser power densities and spot sizes. A two-dimensional finite element model combined with an analytical shock pressure model is constructed to obtain the data from numerical simulation. By combining observations from experiments and numerical simulation of laser shock process, Bayesian inference for the Gaussian model is completed by sampling from the posterior distribution using Morkov chain Monte Carlo. Sensitivities of input parameters are analyzed by the hyperparameters of Gaussian process model to understand their relative importance. The calibration of uncertain parameters is provided with posterior distributions to obtain concentration of values. The constructed predictive model can be computed efficiently to provide an accurate prediction with uncertainty quantification for indentation profile by comparing with experimental data.


Sign in / Sign up

Export Citation Format

Share Document