Steady-State Flow Capacity of Wells With Limited Entry to Flow

1968 ◽  
Vol 8 (01) ◽  
pp. 43-51 ◽  
Author(s):  
A.S. Odeh

Abstract This paper analyzes the effect of limited entry to flow at the wellbore on the steady-state productivity of a well. Wells that have been opened to flow along a fraction of their productive interval are termed wells with limited entry. Previous work treated the cases of a partially penetrating well, a well producing from the central Portion of the productive interval and a well in which several intervals equally spaced were open to flow. In this paper the open interval can be located anywhere within the productive interval. Thus, in a sense, it generalizes previous work. The finite cosine transform was used to arrive at a solution for steady-state flow of a slightly compressible fluid. The solution was programmed for a CDC 1604 computer. Numerical values for rd = 660 ft, rw = 1/4 ft, and range of sand thickness of 20 to 200 ft are presented in graphical form. The effect of rd and rw values on the result is shown in a table. The correct calculation of skin and damage ratio in the presence of limited entry to flow is explained and illustrated by examples. Moreover, the paper shows bow to calculate the net decrease in productivity due to the combined effect of limited entry and perforations. Introduction In some wells only a fraction of the productive interval is open to flow. Location of this fraction is usually dictated by formation characteristics and reservoir behavior. For instance, if a gas cap exists, the open interval is located away from the gas-oil contact to prevent any possible gas coning. Wells that intentionally have been opened to flow along a fraction of their productive formation are termed wells with limited entry. Obviously, unintentional completions of this type also exist. Limited entry to flow decreases well productivity. Magnitude of the loss depends on the fraction of the formation open to flow, on the thickness of the sand, on the location of the open interval and on the ratio of rd/rw, where rw is well radius and rd is the drainage radius of the well. The use of pressure buildup data on producing wells to calculate the condition of the formation around the wellbore is an accepted practice. van Everdingen and Hurst introduced the concept of the skin factor s considered to be due to a thin layer of different permeability immediately around the wellbore. These authors dealt with the case of a well of complete radial geometry, i.e., a well with open-hole completion that completely penetrates the formation. The presence of a low-permeability skin results in a loss of productivity, as does limited entry. Therefore, if pressure buildup data obtained on a well with limited entry are used to establish the presence or absence of skin (i.e., formation damage), and a correction is not made for this loss of productivity, the calculations would result in an erroneous skin value. They might indicate the presence of formation damage when in reality there is none, or they might indicate a value larger than the true value. This could lead to an incorrect basis for planning remedial measures. Muskat studied the problem of partially penetrating wells for the case of incompressible flow. He presented equations and figures which allow estimation of loss in productivity. Brons and Marting, using equations based on Nisle's work, studied the loss of productivity for three cases. The first was for a partially penetrating well; the second was for a well producing from only the central portion of a productive interval; and the third was for a well in which several intervals equally spaced were open to flow. Their work was for steady-state depletion-type reservoirs wherein the well radius of drainage is established and the fluid is considered to be slightly compressible. Considered in this paper is the problem of wells with limited entry in which the open intervals are located anywhere within the productive sand. SPEJ P. 43ˆ

2020 ◽  
Vol 38 (12A) ◽  
pp. 1783-1789
Author(s):  
Jaafar S. Matooq ◽  
Muna J. Ibraheem

 This paper aims to conduct a series of laboratory experiments in case of steady-state flow for the new size 7 ̋ throat width (not presented before) of the cutthroat flume. For this size, five different lengths were adopted 0.535, 0.46, 0.40, 0.325 and 0.27m these lengths were adopted based on the limitations of the available flume. The experimental program has been followed to investigate the hydraulic characteristic and introducing the calibrated formula for free flow application within the discharge ranged between 0.006 and 0.025 m3/s. The calibration result showed that, under suitable operation conditions, the suggested empirical formulas can accurately predict the values of discharge within an error ± 3%.


1996 ◽  
Vol 27 (4) ◽  
pp. 247-254 ◽  
Author(s):  
Zekâi Şen

A simple, approximate but practical graphical method is proposed for estimating the storage coefficient independently from the transmissivity value, provided that quasi-steady state flow data are available from a pumping test. In the past, quasi-steady state flow distance-drawdown data have been used for the determination of transmissivity only. The method is applicable to confined and leaky aquifers. The application of the method has been performed for various aquifer test data available in the groundwater literature. The results are within the practical limits of approximation compared with the unsteady state flow solutions.


2004 ◽  
Author(s):  
J.S. Kim ◽  
Y. Dong ◽  
W.R. Rossen

Author(s):  
Michael Blocher ◽  
Markus May ◽  
Harald Schoenenborn

The influence of the steady state flow solution on the aero-elastic stability behaviour of an annular compressor cascade shall be studied in order to determine sensitivities of the aero-dynamic damping with respect to characteristic flow parameters. In this context two different flow regimes — a subsonic and a transonic case — are subject to the analysis. The pressure distributions, steady as well as unsteady, on the blade surface of the NACA3506 profile are compared to experimental data that has been gained by the Institute of Aeroelasticity of the German Aerospace Center (DLR) during several wind tunnel tests at the annular compressor cascade facility RGP-400 of the Ecole Polytechnique Fe´de´rale de Lausanne (EPFL). Whereas a certain robustness of the unsteady CFD results can be stated for the subsonic flow regime, the transonic regime proves to be very sensitive with respect to the steady state solution.


Sign in / Sign up

Export Citation Format

Share Document