Multi-Well Stimulation Optimization in Shale Formation: Modeling and Application

Author(s):  
Ben Xu ◽  
Yanchao Li
2005 ◽  
Author(s):  
Ibrahim S. Abou-Sayed ◽  
Chris E. Shuchart ◽  
Ming Gong

2021 ◽  
pp. 1-14
Author(s):  
Adrian W. A. Rushton ◽  
Mansoureh Ghobadi Pour ◽  
Leonid E. Popov ◽  
Hadi Jahangir ◽  
Arash Amini

Abstract Graptolites have been collected from sections through Lower Ordovician strata in northern Iran. At the Saluk Mountains, in the Kopet–Dagh region, mudrocks yielded fragmentary tubaria of Rhabdinopora sp. cf. R. flabelliformis, indicating the presence of lower Tremadocian strata there; stratigraphically, they lie between two limestone beds with the euconodont Cordylodus lindstromi. At Simeh–Kuh in the eastern Alborz Mountains (Semnan Province), upper Tremadocian – lower Floian strata include laminated dark mudstones that contain restricted graptolite faunas, mainly of small declined didymograptids; these are thought to represent incursions of plankton during periods of marine highstands. The lower major flooding surface in Simeh–Kuh coincides with an invasion of the graptolite biofacies and an incursion of Hunnegraptus? sp.; the second major flooding surface is associated with an incursion of Baltograptus geometricus. They were most probably synchronous with those in the lower part of the Hunnegraptus copiosus Biozone and at the base of the Cymatograptus protobalticus Biozone in the of the Tøyen Shale Formation succession of Västergötland, Scandinavia, suggesting that observed characters of sedimentation were eustatically controlled.


2021 ◽  
Vol 11 (11) ◽  
pp. 4874
Author(s):  
Milan Brankovic ◽  
Eduardo Gildin ◽  
Richard L. Gibson ◽  
Mark E. Everett

Seismic data provides integral information in geophysical exploration, for locating hydrocarbon rich areas as well as for fracture monitoring during well stimulation. Because of its high frequency acquisition rate and dense spatial sampling, distributed acoustic sensing (DAS) has seen increasing application in microseimic monitoring. Given large volumes of data to be analyzed in real-time and impractical memory and storage requirements, fast compression and accurate interpretation methods are necessary for real-time monitoring campaigns using DAS. In response to the developments in data acquisition, we have created shifted-matrix decomposition (SMD) to compress seismic data by storing it into pairs of singular vectors coupled with shift vectors. This is achieved by shifting the columns of a matrix of seismic data before applying singular value decomposition (SVD) to it to extract a pair of singular vectors. The purpose of SMD is data denoising as well as compression, as reconstructing seismic data from its compressed form creates a denoised version of the original data. By analyzing the data in its compressed form, we can also run signal detection and velocity estimation analysis. Therefore, the developed algorithm can simultaneously compress and denoise seismic data while also analyzing compressed data to estimate signal presence and wave velocities. To show its efficiency, we compare SMD to local SVD and structure-oriented SVD, which are similar SVD-based methods used only for denoising seismic data. While the development of SMD is motivated by the increasing use of DAS, SMD can be applied to any seismic data obtained from a large number of receivers. For example, here we present initial applications of SMD to readily available marine seismic data.


1982 ◽  
Vol 34 (08) ◽  
pp. 1805-1810 ◽  
Author(s):  
John T. Patton ◽  
Phil Sigmund ◽  
Brian Evans ◽  
Shanu Ghose ◽  
Dick Weinbrandt

2018 ◽  
Vol 33 (02) ◽  
pp. 393-408
Author(s):  
Daniel I. O'Reilly ◽  
Brad S. Hopcroft ◽  
Kate A. Nelligan ◽  
Guan K. Ng ◽  
Bree H. Goff ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document