scholarly journals A Machine Learning-Based Seismic Data Compression and Interpretation Using a Novel Shifted-Matrix Decomposition Algorithm

2021 ◽  
Vol 11 (11) ◽  
pp. 4874
Author(s):  
Milan Brankovic ◽  
Eduardo Gildin ◽  
Richard L. Gibson ◽  
Mark E. Everett

Seismic data provides integral information in geophysical exploration, for locating hydrocarbon rich areas as well as for fracture monitoring during well stimulation. Because of its high frequency acquisition rate and dense spatial sampling, distributed acoustic sensing (DAS) has seen increasing application in microseimic monitoring. Given large volumes of data to be analyzed in real-time and impractical memory and storage requirements, fast compression and accurate interpretation methods are necessary for real-time monitoring campaigns using DAS. In response to the developments in data acquisition, we have created shifted-matrix decomposition (SMD) to compress seismic data by storing it into pairs of singular vectors coupled with shift vectors. This is achieved by shifting the columns of a matrix of seismic data before applying singular value decomposition (SVD) to it to extract a pair of singular vectors. The purpose of SMD is data denoising as well as compression, as reconstructing seismic data from its compressed form creates a denoised version of the original data. By analyzing the data in its compressed form, we can also run signal detection and velocity estimation analysis. Therefore, the developed algorithm can simultaneously compress and denoise seismic data while also analyzing compressed data to estimate signal presence and wave velocities. To show its efficiency, we compare SMD to local SVD and structure-oriented SVD, which are similar SVD-based methods used only for denoising seismic data. While the development of SMD is motivated by the increasing use of DAS, SMD can be applied to any seismic data obtained from a large number of receivers. For example, here we present initial applications of SMD to readily available marine seismic data.

2020 ◽  
Vol 91 (4) ◽  
pp. 2127-2140 ◽  
Author(s):  
Glenn Thompson ◽  
John A. Power ◽  
Jochen Braunmiller ◽  
Andrew B. Lockhart ◽  
Lloyd Lynch ◽  
...  

Abstract An eruption of the Soufrière Hills Volcano (SHV) on the eastern Caribbean island of Montserrat began on 18 July 1995 and continued until February 2010. Within nine days of the eruption onset, an existing four-station analog seismic network (ASN) was expanded to 10 sites. Telemetered data from this network were recorded, processed, and archived locally using a system developed by scientists from the U.S. Geological Survey (USGS) Volcano Disaster Assistance Program (VDAP). In October 1996, a digital seismic network (DSN) was deployed with the ability to capture larger amplitude signals across a broader frequency range. These two networks operated in parallel until December 2004, with separate telemetry and acquisition systems (analysis systems were merged in March 2001). Although the DSN provided better quality data for research, the ASN featured superior real-time monitoring tools and captured valuable data including the only seismic data from the first 15 months of the eruption. These successes of the ASN have been rather overlooked. This article documents the evolution of the ASN, the VDAP system, the original data captured, and the recovery and conversion of more than 230,000 seismic events from legacy SUDS, Hypo71, and Seislog formats into Seisan database with waveform data in miniSEED format. No digital catalog existed for these events, but students at the University of South Florida have classified two-thirds of the 40,000 events that were captured between July 1995 and October 1996. Locations and magnitudes were recovered for ∼10,000 of these events. Real-time seismic amplitude measurement, seismic spectral amplitude measurement, and tiltmeter data were also captured. The result is that the ASN seismic dataset is now more discoverable, accessible, and reusable, in accordance with FAIR data principles. These efforts could catalyze new research on the 1995–2010 SHV eruption. Furthermore, many observatories have data in these same legacy data formats and might benefit from procedures and codes documented here.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
Dawei Liu ◽  
Lei Gao ◽  
Xiaokai Wang ◽  
wenchao Chen

Acquisition footprint causes serious interference with seismic attribute analysis, which severely hinders accurate reservoir characterization. Therefore, acquisition footprint suppression has become increasingly important in industry and academia. In this work, we assume that the time slice of 3D post-stack migration seismic data mainly comprises two components, i.e., useful signals and acquisition footprint. Useful signals describe the spatial distributions of geological structures with local piecewise smooth morphological features. However, acquisition footprint often behaves as periodic artifacts in the time-slice domain. In particular, the local morphological features of the acquisition footprint in the marine seismic acquisition appear as stripes. As useful signals and acquisition footprint have different morphological features, we can train an adaptive dictionary and divide the atoms of the dictionary into two sub-dictionaries to reconstruct these two components. We propose an adaptive dictionary learning method for acquisition footprint suppression in the time slice of 3D post-stack migration seismic data. To obtain an adaptive dictionary, we use the K-singular value decomposition algorithm to sparsely represent the patches in the time slice of 3D post-stack migration seismic data. Each atom of the trained dictionary represents certain local morphological features of the time slice. According to the difference in the variation level between the horizontal and vertical directions, the atoms of the trained dictionary are divided into two types. One type significantly represents the local morphological features of the acquisition footprint, whereas the other type represents the local morphological features of useful signals. Then, these two components are reconstructed using morphological component analysis based on different types of atoms, respectively. Synthetic and field data examples indicate that the proposed method can effectively suppress the acquisition footprint with fidelity to the original data.


1994 ◽  
Vol 7 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Sha-Bai Li ◽  
Qi-Yuan Liu ◽  
Li-Ren Shen

2008 ◽  
Vol 66 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Gwang H. Lee ◽  
Han J. Kim ◽  
Dae C. Kim ◽  
Bo Y. Yi ◽  
Seong M. Nam ◽  
...  

Abstract Lee, G. H., Kim, H. J., Kim, D. C., Yi, B. Y., Nam, S. M., Khim, B. K., and Lim, M. S. 2009. The acoustic diversity of the seabed based on the similarity index computed from Chirp seismic data. – ICES Journal of Marine Science, 66: 227–236. The similarity index (SI), computed from the singular value decomposition of seabed-echo envelopes recorded in Chirp seismic data, was tested in mapping the acoustic diversity of the seabed in Suyong Bay, Busan, Korea. Rocky bottom is characterized by low SI values, indicating acoustic heterogeneity, and sedimentary seabed by high SI values, also indicating acoustic homogeneity. Isolated areas of low SI values, not identified as rocky bottom in Chirp profiles, may suggest a shallow basement. The gradual seaward change of the substratum from coarse-grained to relatively poorly sorted, finer-grained sediments also corresponds to an overall seaward decrease in the SI value. The straightforward and quick computation of the SI makes it possible to assess the gross acoustic diversity of the seabed in almost real time.


2017 ◽  
Vol 39 (6) ◽  
pp. 106-121
Author(s):  
A. O. Verpahovskaya ◽  
V. N. Pilipenko ◽  
Е. V. Pylypenko

2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Lourenildo W.B. Leite ◽  
J. Mann ◽  
Wildney W.S. Vieira

ABSTRACT. The present case study results from a consistent processing and imaging of marine seismic data from a set collected over sedimentary basins of the East Brazilian Atlantic. Our general aim is... RESUMO. O presente artigo resulta de um processamento e imageamento consistentes de dados sísmicos marinhos de levantamento realizado em bacias sedimentares do Atlântico do Nordeste...


2019 ◽  
Author(s):  
Ian W.D. Dalziel ◽  
◽  
Robert Smalley ◽  
Lawrence A. Lawver ◽  
Demian Gomez ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
E. Bertino ◽  
M. R. Jahanshahi ◽  
A. Singla ◽  
R.-T. Wu

AbstractThis paper addresses the problem of efficient and effective data collection and analytics for applications such as civil infrastructure monitoring and emergency management. Such problem requires the development of techniques by which data acquisition devices, such as IoT devices, can: (a) perform local analysis of collected data; and (b) based on the results of such analysis, autonomously decide further data acquisition. The ability to perform local analysis is critical in order to reduce the transmission costs and latency as the results of an analysis are usually smaller in size than the original data. As an example, in case of strict real-time requirements, the analysis results can be transmitted in real-time, whereas the actual collected data can be uploaded later on. The ability to autonomously decide about further data acquisition enhances scalability and reduces the need of real-time human involvement in data acquisition processes, especially in contexts with critical real-time requirements. The paper focuses on deep neural networks and discusses techniques for supporting transfer learning and pruning, so to reduce the times for training the networks and the size of the networks for deployment at IoT devices. We also discuss approaches based on machine learning reinforcement techniques enhancing the autonomy of IoT devices.


Sign in / Sign up

Export Citation Format

Share Document