Tuning the Relative Permeability Curves to Successfully History Match the Multi-Component Compositional Model of an Oil-Gas-Condensate Field (Russian)

2016 ◽  
Author(s):  
Marina Pokhilyuk ◽  
Assiya Kazhykenkyzy ◽  
Gulnara Tasmukhanova
2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Bander N. Al Ghamdi ◽  
Luis F. Ayala H.

Gas-condensate productivity is highly dependent on the thermodynamic behavior of the fluids-in-place. The condensation attendant with the depletion of gas-condensate reservoirs leads to a deficiency in the flow of fluids moving toward the production channels. The impairment is a result of condensate accumulation near the production channels in an immobility state until reaching a critical saturation point. Considering the flow phenomenon of gas-condensate reservoirs, tight formations can be inevitably complex hosting environments in which to achieve economical production. This work is aimed to assess the productivity gas-condensate reservoirs in a naturally fractured setting against the effect of capillary pressure and relative permeability constraints. The severity of condensate coating and magnitude of impairment was evaluated in a system with a permeability of 0.001 mD using an in-house compositional simulator. Several composition combinations were considered to portray mixtures ascending in complexity from light to heavy. The examination showed that thicker walls of condensate and greater impairment are attained with mixture containing higher nonvolatile concentrations. In addition, the influence of different capillary curves was insignificant to the overall behavior of fluids-in-place and movement within the pores medium. A greater impact on the transport of fluids was owed to relative permeability curves, which showed dependency on the extent of condensate content. Activating diffusion was found to diminish flow constraints due to the capturing of additional extractions that were not accounted for under Darcy's law alone.


Author(s):  
Akinsete O. Oluwatoyin ◽  
Anuka A. Agnes

Pressure depletion in gas-condensate reservoirs create two-phase flow. It is pertinent to understand the behavior of gas-condensate reservoirs as pressure decline in order to develop proper producing strategies that would increase gas and condensate productivity. Eclipse 300 was used to simulate gas-condensate reservoirs, a base case model was created using both black-oil and compositional models. The effects of three Equation of States (EOS) incorporated into the models were analysed and condensate dropout effect on relative permeability was studied. Analysis of various case models showed that, gas production was maintained at 500MMSCF/D for about 18 and 12 months for black-oil and compositional models, respectively. However, the compositional model revealed that condensate production began after a period of two months at 50MSTB/D whereas for the black oil model, condensate production began immediately at 32MSTB/D. Comparison of Peng-Robinson EOS, Soave-Redlich-Kwong EOS and Schmidt Wenzel EOS gave total estimates of condensate production as 19MMSTB, 15MMSTB and 9MMSTB and initial values of gas productivity index as 320, 380 and 560, respectively. The results also showed that as condensate saturation increased, the relative permeability of gas decreased from 1 to 0 while the relative permeability of oil increased from 0.15 to 0.85. The reservoir simulation results showed that compositional model is better than black-oil model in modelling for gas-condensate reservoirs. Optimal production was obtained using 3-parameter Peng-Robinson and Soave-Redlich-Kwong EOS which provide a molar volume shift to prevent an underestimation of liquid density and saturations. Phase behaviour and relative permeability affect the behaviour of gas-condensate reservoirs.


SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 267-276 ◽  
Author(s):  
Xianhui Kong ◽  
Mojdeh Delshad ◽  
Mary F. Wheeler

Summary Numerical modeling and simulation are essential tools for developing a better understanding of the geologic characteristics of aquifers and providing technical support for future carbon dioxide (CO2) storage projects. Modeling CO2 sequestration in underground aquifers requires the implementation of models of multiphase flow and CO2 and brine phase behavior. Capillary pressure and relative permeability need to be consistent with permeability/porosity variations of the rock. It is, therefore, crucial to gain confidence in the numerical models by validating the models and results by use of laboratory and field pilot results. A published CO2/brine laboratory coreflood was selected for our simulation study. The experimental results include subcore porosity and CO2-saturation distributions by means of a computed tomography (CT) scanner along with a CO2-saturation histogram. Data used in this paper are all based on those provided by Krause et al. (2011), with the exception of the CT porosity data. We generated a heterogeneous distribution for the porosity but honoring the mean value provided by Krause et al. (2011). We also generated the permeability distribution with the mean value for the whole core given by Krause et al. (2011). All the other data, such as the core dimensions, injection rate, outlet pressure, temperature, relative permeability, and capillary pressure, are the same as those in Krause et al. (2011). High-resolution coreflood simulations of brine displacement with supercritical CO2 are presented with the compositional reservoir simulator IPARS (Wheeler and Wheeler 1990). A 3D synthetic core model was constructed with permeability and porosity distributions generated by use of the geostatistical software FFTSIM [Jennings et al. (2000)], with cell sizes of 1.27×1.27×6.35 mm. The core was initially saturated with brine. Fluid properties were calibrated with the equation-of-state (EOS) compositional model to match the measured data provided by Krause et al. (2011). We used their measured capillary pressure and relative permeability curves. However, we scaled capillary pressure on the basis of the Leverett J-function (Leverett 1941) for permeability, porosity, and interfacial tension (IFT) in every simulation grid cell. Saturation images provide insight into the role of heterogeneity of CO2 distribution in which a slight variation in porosity gives rise to large variations in CO2-saturation distribution in the core. High-resolution numerical results indicated that accurate representation of capillary pressure at small scales was critical. Residual brine saturation and the subsequent shift in the relative permeability curves showed a significant impact on final CO2 distribution in the core.


Sign in / Sign up

Export Citation Format

Share Document