Modeling and Interpretation of the Bottomhole Temperature Transient Data

Author(s):  
Mustafa Onur
SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1134-1155 ◽  
Author(s):  
Mustafa Onur ◽  
Murat Cinar

Summary This paper presents new semilog-straight-line and temperature-derivative methods for interpreting and analyzing sandface-temperature transient data from constant-rate drawdown and buildup tests conducted in infinite-acting reservoirs containing slightly compressible fluid of constant compressibility and viscosity. The procedures are dependent on the analytical solutions accounting for Joule-Thomson (J-T) heating/cooling, adiabatic-fluid expansion, and conduction and convection effects. The development of the analytical solutions is dependent on the fact that the effects of temperature changes on pressure-transient data can be neglected so that the pressure-diffusivity and thermal-energy-balance equations can be decoupled. The analytical solutions are verified by and are found in excellent agreement with the solutions of a commercial nonisothermal reservoir simulator. It is shown that drawdown and buildup sandface-temperature data may exhibit three infinite-acting radial-flow (IARF) periods (represented by semilog equations): one at early times reflecting the adiabatic expansion/compression effects, another at intermediate times reflecting the J-T expansion in the skin zone if skin exists, and the third at late times reflecting J-T expansion effects in the nonskin zone. Performing semilog analyses by use of these IARF regimes gives estimates of permeability of skin and nonskin zones as well as the radius of the skin zone, assuming that the J-T coefficient of the fluid and the viscosity are known. Parameters such as skin-zone permeability and radius are not readily accessible from conventional pressure-transient analysis (PTA) from which only the skin factor and nonskin-zone permeability can be obtained. The applicability of the proposed analysis procedure is demonstrated by considering synthetic and field-test data. The results indicate that the analysis procedure provides reliable estimates of skin-zone and nonskin-zone permeability and skin-zone radius from drawdown or buildup temperature data jointly with pressure data.


2021 ◽  
Author(s):  
Mohammed Al-Hashemi ◽  
Daria Spivakovskaya ◽  
Evert Moes ◽  
Peter in ‘t Panhuis ◽  
Gijs Hemink ◽  
...  

Abstract Fiber Optic Systems, such as Distributed Temperature Sensing (DTS), have been used for wellbore surveillance for more than two decades. One of the traditional applications of DTS is injectivity profiling, both for hydraulically fractured and non-fractured wells. There is a long history of determining injectivity profiles using temperature profiles, usually by analyzing warm-back data with largely pure heat conduction models or by employing a so-called "hot-slug" approach that requires tracking of a temperature transient that arises at the onset of injection. In many of these attempts there is no analysis performed for the key influencing physical factors that could create significant ambiguity in the interpretation results. Among such factors we will consider in detail is the possible impact of cross-flow during the early warm-back stage, but also the temperature transient signal that is related to the location of the fiber-optic sensing cable behind the casing when the fast transient data are used for interpretation such as the "hot slug" during re-injection. In this paper it will be shown that despite all such potential complications, the high frequency and quality of the transient data that can be obtained from a continuous DTS measurement allow for a highly reliable and robust evaluation of the injectivity profile. The well-known challenge of the ambiguity of the interpretation, produced by the interpretation methods that are conventionally used, is overcome using the innovative "Pressure Rate Temperature Transient Analysis" method that takes maximum use of the complete DTS transient data set and all other available data at the level of the model-based interpretation. This method is based on conversion of field measurements into injectivity profiles taking into account the uncertainty in different parts of the data set, which includes the specifics of the DTS deployment, the uncertainty in surface flow rates, and possible data gaps in the history of the well. Several case studies will be discussed where this approach was applied to water injection wells. For the analysis, the re-injection and warmback DTS transient temperature measurements were taken from across the sandface. Furthermore, for comparison, injection profiles were also recorded by conventional PLTs in parallel. This case study will focus mostly on the advanced interpretation opportunities and the challenges related to crossflow through the wellbore during the warm-back phase, related to reservoir pressure dynamics, and finally related to the impact of the method of DTS deployment. In addition to describing the interpretation methodology, this paper will also show the final comparison of the fiber-optic evaluation with the interpretation obtained from the reference PLTs.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1625-1632
Author(s):  
C. B. Smith ◽  
N. M. Wereley

Sign in / Sign up

Export Citation Format

Share Document