Water Injection Profiling Using Fiber Optic Sensing by Applying the Novel Pressure Rate Temperature Transient PTRA Analysis

2021 ◽  
Author(s):  
Mohammed Al-Hashemi ◽  
Daria Spivakovskaya ◽  
Evert Moes ◽  
Peter in ‘t Panhuis ◽  
Gijs Hemink ◽  
...  

Abstract Fiber Optic Systems, such as Distributed Temperature Sensing (DTS), have been used for wellbore surveillance for more than two decades. One of the traditional applications of DTS is injectivity profiling, both for hydraulically fractured and non-fractured wells. There is a long history of determining injectivity profiles using temperature profiles, usually by analyzing warm-back data with largely pure heat conduction models or by employing a so-called "hot-slug" approach that requires tracking of a temperature transient that arises at the onset of injection. In many of these attempts there is no analysis performed for the key influencing physical factors that could create significant ambiguity in the interpretation results. Among such factors we will consider in detail is the possible impact of cross-flow during the early warm-back stage, but also the temperature transient signal that is related to the location of the fiber-optic sensing cable behind the casing when the fast transient data are used for interpretation such as the "hot slug" during re-injection. In this paper it will be shown that despite all such potential complications, the high frequency and quality of the transient data that can be obtained from a continuous DTS measurement allow for a highly reliable and robust evaluation of the injectivity profile. The well-known challenge of the ambiguity of the interpretation, produced by the interpretation methods that are conventionally used, is overcome using the innovative "Pressure Rate Temperature Transient Analysis" method that takes maximum use of the complete DTS transient data set and all other available data at the level of the model-based interpretation. This method is based on conversion of field measurements into injectivity profiles taking into account the uncertainty in different parts of the data set, which includes the specifics of the DTS deployment, the uncertainty in surface flow rates, and possible data gaps in the history of the well. Several case studies will be discussed where this approach was applied to water injection wells. For the analysis, the re-injection and warmback DTS transient temperature measurements were taken from across the sandface. Furthermore, for comparison, injection profiles were also recorded by conventional PLTs in parallel. This case study will focus mostly on the advanced interpretation opportunities and the challenges related to crossflow through the wellbore during the warm-back phase, related to reservoir pressure dynamics, and finally related to the impact of the method of DTS deployment. In addition to describing the interpretation methodology, this paper will also show the final comparison of the fiber-optic evaluation with the interpretation obtained from the reference PLTs.

2020 ◽  
Vol 21 (2) ◽  
pp. 143-148
Author(s):  
Michael W. Overton

AbstractBovine respiratory disease (BRD) is a frequent disease concern in dairy cattle and is most commonly diagnosed in young dairy heifers. The impact of BRD is highly variable, depending on the accuracy and completeness of detection, effectiveness of treatment, and on-farm culling practices. Consequences include decreased rate of weight gain, a higher culling risk either as heifers or as cows, delayed age at first service, delayed age at first calving, and in some cases, lower future milk production. In this data set of 104,100 dairy replacement heifers from across the USA, 36.6% had one or more cases diagnosed within the first 120 days of age with the highest risk of new cases occurring prior to weaning. Comparison of the raising cost for heifers with BRD and those without a recorded history of BRD resulted in an estimated cost per incident case occurring in the first 120 days of age of $252 or $282, depending upon whether anticipated future milk production differences were considered or not. Current market conditions contributed to a cost estimate that is significantly higher than previously published estimates, driven in part by the losses associated with selective culling of a subset of heifers that experienced BRD.


2021 ◽  
Author(s):  
Abdulaziz Al-Qasim ◽  
Sharidah Alabduh ◽  
Muhannad Alabdullateef ◽  
Mutaz Alsubhi

Abstract Fiber-optic sensing (FOS) technology is gradually becoming a pervasive tool in the monitoring and surveillance toolkit for reservoir engineers. Traditionally, sensing with fiber optic technology in the form of distributed temperature sensing (DTS) or distributed acoustic sensing (DAS), and most recently distributed strain sensing (DSS), distributed flow sensing (DFS) and distributed pressure sensing (DPS) were done with the fiber being permanently clamped either behind the casing or production tubing. Distributed chemical sensing (DCS) is still in the development phase. The emergence of the composite carbon-rod (CCR) system that can be easily deployed in and out of a well, similar to wireline logging, has opened up a vista of possibilities to obtain many FOS measurements in any well without prior fiber-optic installation. Currently, combinations of distributed FOS data are being used for injection management, well integrity monitoring, well stimulation and production performance optimization, thermal recovery management, etc. Is it possible to integrate many of the distributed FOS measurements in the CCR or a hybrid combination with wireline to obtain multiple measurements with one FOS cable? Each one of FOS has its own use to get certain data, or combination of FOS can be used to make a further interpretation. This paper reviews the state of the art of the FOS technology and the gamut of current different applications of FOS data in the oil and gas (upstream) industry. We present some results of traditional FOS measurements for well integrity monitoring, assessing production and injection flow profile, cross flow behind casing, etc. We propose some nontraditional applications of the technology and suggest a few ways through. Which the technology can be deployed for obtaining some key reservoir description and dynamics data for reservoir performance optimization.


2021 ◽  
Author(s):  
Martin P. Lipus ◽  
Felix Schölderle ◽  
Thomas Reinsch ◽  
Christopher Wollin ◽  
Charlotte M. Krawczyk ◽  
...  

Abstract. Fiber-optic distributed acoustic sensing (DAS) data finds many applications in wellbore monitoring such as e.g. flow monitoring, formation evaluation, and well integrity studies. For horizontal or highly deviated wells, wellbore fiber-optic installations can be conducted by mounting the sensing cable to a rigid structure (casing/tubing) which allows for a controlled landing of the cable. We analyze a cold-water injection phase in a geothermal well with a 3.6 km long fiber-optic installation mounted to a ¾” sucker-rod by using both DAS and distributed temperature sensing (DTS) data. During cold-water injection, we observe distinct vibrational events (shock waves) which originate in the reservoir interval and migrate up- and downwards. We use temperature differences from the DTS data to determine the theoretical thermal contraction and integrated DAS data to estimate the actual deformation of the rod construction. The results suggest that the rod experiences thermal stresses along the installation length – partly in the compressional and partly in the extensional regime. We find strong evidence that the observed vibrational events originate from the release of the thermal stresses when the friction of the rod against the borehole wall is overcome. Within this study, we show the influence of temperature changes on the acquisition of distributed acoustic/strain sensing data along a fiber-optic cable suspended along a rigid but freely hanging rod. We show that observed vibrational events do not necessarily originate from induced seismicity in the reservoir, but instead, can originate from stick-slip behavior of the rod construction that holds the measurement equipment.


2021 ◽  
Author(s):  
Jorge Gomes ◽  
Jane Mason ◽  
Graham Edmonstone

This paper highlights the application of downhole fiber optic (FO) distributed temperature sensing (DTS) measurements for well and reservoir management applications: 1) Wellbore water injectivity profiling. 2) Mapping of injection water movement in an underlying reservoir. The U.A.E. field in question is an elongated anticline containing several stacked carbonate oil bearing reservoirs (Figure 1). Reservoir A, where two DTS monitored, peripheral horizontal water injectors (Y-1 and Y-2) were drilled, is less developed and tighter than the immediately underlying, more prolific Reservoir B with 40 years of oil production and water injection history. Reservoirs A and B are of Lower Cretaceous age, limestone fabrics made up of several 4th order cycles, subdivided by several thin intra dense, 2-5 ft thick stylolitic intervals within the reservoir zones. Between Reservoir A and Reservoir B there is a dense limestone interval (30-50 ft), referred as dense layer in the Figure 1 well sections.


Author(s):  
Daniele Inaudi ◽  
Roberto Walder

Distributed Fiber optic sensing system is a unique tool for the evaluation of distributed temperature over several kilometers. It is a powerful diagnostic instrument for the identification and localization of potential problems, such as leakages in pipelines and dykes, hot-spots in high-voltage cables and other events that create temperature anomalies. Such distributed temperature sensing (DTS) systems have the advantage of being relatively easy to deploy over long pipeline sections and have been shown to detect leakages events with good accuracy and reliability. However, when distributed fiber optic sensing systems are deployed in security-critical applications, where availability and reliability are crucial, it is important to continuously verify and assess the correct functioning and reliability of the whole system, including the sensing cables, the measurement system, the data analysis software and the alert transmission. In the past, such testing have been performed periodically by the pipeline personnel, but testing frequencies are typically low, e.g. once per year. The DTS Automated Trip Testing System is a fully independent device that is able to produce a controlled and localized thermal anomaly (hot spot or cold spot) and verify its correct detection. This allows a continuous verification of the DTS system reliability and functionality and a periodic statistical evaluation of the confidence level (proven by experience SIL rating). This paper will present more specifically the development, the functioning and deployment, and its applications of an automated system and method for testing the efficacy and reliability of distributed temperature sensing (DTS) systems, in particular those DTS systems used for pipeline leakage detection.


2022 ◽  
Vol 2 ◽  
Author(s):  
Meng-Ya Sun ◽  
Bin Shi ◽  
Jun-Yi Guo ◽  
Hong-Hu Zhu ◽  
Hong-Tao Jiang ◽  
...  

Accurate acquisition of the moisture field distribution in in situ soil is of great significance to prevent geological disasters and protect the soil ecological environment. In recent years, rapidly developed fiber-optic sensing technology has shown outstanding advantages, such as distributed measurement, long-distance monitoring, and good durability, which provides a new technical means for soil moisture field monitoring. After several years of technical research, the authors’ group has made a number of new achievements in the development of fiber-optic sensing technology for the soil moisture field, that is, two new fiber-optic sensing technologies for soil moisture content, including the actively heated fiber Bragg grating (AH-FBG) technology and the actively heated distributed temperature sensing (AH-DTS) technology, and a new fiber-optic sensing technology for soil pore gas humidity are developed. This paper systematically summarizes the three fiber-optic sensing technologies for soil moisture field, including sensing principle, sensor development and calibration test. Moreover, the practical application cases of three fiber-optic sensing technologies are introduced. Finally, the development trend of fiber-optic sensing technology for soil moisture field in the future is summarized and prospected.


Author(s):  
Xing Wang ◽  
Bin Shi ◽  
Guangqing Wei ◽  
Shenen Chen

To help reduce the impact of geohazards, an innovative landslide early-warning technology based on an energy demodulation-based fiber optic sensing (FOS-LW for short) technology, is introduced in this paper. FOS-LW measures the energy change in a sensing fiber at the segment of micro-bending, which can be caused by landslide movements, and automatically raises an alarm as soon as the measured signal intensity in the fiber reaches a pre-set threshold. Based on the sensing of micro-bending losses in the fiber optics, a two-event sensing algorithm has been developed for the landslide early-warning. The feasibility of the FOS-LW technology is verified through laboratory simulation and field tests. The result shows that FOS-LW has some unique features such as the graded alarm, real-time responses, remote monitoring, low cost and passive optical network, and can be applied in the early-warning of landslides.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 729c-729
Author(s):  
Susan Lindley ◽  
D. L. Creech

Stephen F. Austin State University is known as the ``University Among the Pines.” The campus is located along the banks of LnNana creek in the center of Nacogdocha, the oldest town in Texas. Rich with history, the community and the university are now recognizing that cultural. historical and landscape treasure deserve greater protection and conservation. This project involves: 1) collecting a data set of each tree on campus including quadrant identifier, plant ID #, species, dbh, tree health, location, crow diameter, tree height and tree value, 2) placing all trees on a campus map in ArcCAD®, a Geographic Information System (GIS) developed for the PC, 3) linking map entities (trees, polygons, themes) with specific rows in a database, and 4) developing a query strategy to ask questions of the landscape. Database queries are powerful analytical tools which can generate resultant maps that answer specific landscape questions. These maps can then be queried again for further analysis. Examples of typical queries might include: 1) illustrate only those pines with a dbh greater than 24″, 2) identify all oak trees within thirty feet of a building, or 3) illustrate all trees over sixty feet with poor tree health. ArcCAD® links the easy drafting capabilities of AutoCAD® with much of the functionality of a true GIS workstation. Map files can be linked to a database(s), text, and visual images (TIF files). We have scanned and are currently archiving old photographs of the campus for future linkages. By understanding the history of the university landscape and documenting the current status of campus vegetation, decision-makers can have at strategies that lessen the impact of development.


2019 ◽  
Vol 118 ◽  
pp. 02046
Author(s):  
Yiqiang Li ◽  
Junrong Liu

Fiber-optic sensing (FOS) are an emerging technology in hydraulic fracture diagnosis. Fiber-optic sensing technologies mainly include distributed temperature sensing (DTS) and distributed sound sensing (DAS). During hydraulic fracturing, the perforation cluster efficiency for cemented plug and perforation (PnP) wells, points of fracture initiation for packer and sleeve (PnS), and fluid channelling between fractured intervals caused by either tubular or annular leaks could be quantitatively evaluated by DTS data. Combined with DAS data, fluid distributions for each fracturing stage along the entire horizontal wellbore could be obtained. The roles of DTS and DAS in different hydraulic fracture stages are comprehensively analyzed in this paper. It provides a guidance for application of FOs in oil industry.


Sign in / Sign up

Export Citation Format

Share Document