How to Solve High Water Cut Well Problem in Mature Oil Field, Case Study: Application of Modified Completion Fluid Treatment in WW D-29, WW H-12, II A-22 Wells

Author(s):  
F. N. Afi ◽  
H. Gunawan ◽  
R. Widiatmo ◽  
L. B. Waskito ◽  
P. Nugroho ◽  
...  
2016 ◽  
Author(s):  
Xueqing Tang ◽  
Lirong Dou ◽  
Ruifeng Wang ◽  
Jie Wang ◽  
Shengbao Wang ◽  
...  

ABSTRACT Jake field, discovered in July, 2006, contains 10 oil-producing and 12 condensate gas-producing zones. The wells have high flow capacities, producing from long-perforation interval of 3,911 ft (from 4,531 to 8,442 ft). Production mechanisms include gas injection in downdip wells and traditional gas lift in updip, zonal production wells since the start-up of field in July, 2010. Following pressure depletion of oil and condensate-gas zones and water breakthrough, traditional gas-lift wells became inefficient and dead. Based on nodal analysis of entire pay zones, successful innovations in gas lift have been made since March, 2013. This paper highlights them in the following aspects: Extend end of tubing to the bottom of perforations for commingled production of oil and condensate gas zones, in order to utilize condensate gas producing from the lower zones for in-situ gas lift.Produce well stream from the casing annulus while injecting natural gas into the tubing.High-pressure nitrogen generated in-situ was used to kick off the dead wells, instead of installation of gas lift valves for unloading. After unloading process, the gas from compressors was injected down the tubing and back up the casing annulus.For previous high water-cut producers, prior to continuous gas lift, approximately 3.6 MMcf of nitrogen can be injected and soaked a couple of days for anti-water-coning.Two additional 10-in. flow lines were constructed to minimize the back pressure of surface facilities on wellhead. As a consequence, innovative gas-lift brought dead wells back on production, yielding average sustained liquid rate of 7,500 bbl/d per well. Also, the production decline curves flattened out than before.


2009 ◽  
Author(s):  
Fathi Younis Shnaib ◽  
Abdel Maksoud Mohamed Desouky ◽  
Nagendra Mehrotra ◽  
Mohamed Muhiz Kuthubdeen ◽  
Gunther Rutzinger ◽  
...  

2013 ◽  
Vol 803 ◽  
pp. 383-386
Author(s):  
Shu Ren Yang ◽  
Di Xu ◽  
Chao Yu ◽  
Jia Wei Fan ◽  
Cheng Chu Yue Fu

In order to solve the problem of high water cut wells in some oil field in Daqing that it could not get the large-scale application because of the bad separating effect of down hole centrifugal oil-water separator, we optimize the design of multi-cup uniform flux oil-water separator according to the similar separation principle of multi-cup uniform flux gas anchor, and it is obtained to achieve of injection-production technology in the same well which is of high water cut. The design concept of the separator is increasing the number of opening every layer and aperture gradually in subsection from up to down in the design process. The purpose is to get the close intake quantity of every orifice and guarantee the residence time is long enough in the separator, effectively shorten the length of down hole oil-water separator and reduce the production costs and operating costs.


2013 ◽  
Vol 868 ◽  
pp. 645-650
Author(s):  
Lin Li

The parameters of reservoir impact all the sectors of oilfield developing after flood development, so methods of separate stratum injection allocation are researched for forecasting the petroleum reservoir performance accurately. The methods of separate stratum injection allocation are significative for remaining oil distribution, injection allocation of interval and the level of exploitation and administration in high water cut stage. First, we should derive injection-withdrawal ratio (IWR), gradient of pressure and water cut by material balance equation.The injection allocation of single well,injection wells and property of interval are determined by the research of split coefficient.We find the reservoir small error, lower water cut, high degree of reservoir recovery by anaysising the results of separate stratum injection allocation.The results show that separate stratum injection allocation is scientific and reasonable, simple and applied for the oil field in high water cut stage.


Author(s):  
F. Shnaib ◽  
A.M. Desouky ◽  
N. Mehrotra ◽  
M.M. Kuthubdeen ◽  
G. Rutzinger ◽  
...  

2021 ◽  
Author(s):  
Truong Nguyen Huu

Abstract In the past decades, most oil explotation in the White Tiger oil field was produced from the basement reservoir. However, in recent years, these pay zones consist of basement reservoirs, Oligocene reservoirs, and Miocene reservoirs of which oil field s have been declined in oil production rate due to several issues such as complex fracture network, high heterogeneity formation, high water cut, and the reduction of reservoir pressure. The huge issues in the most production wells at basement reservoir were high water cut and it has been significantly increasing during oil production yearly. Therefore, the total amount of oil production in all pay zones sharply decreased with time. At present, the lower Miocene reservoir is one of the best tight oil reservoirs to produce oil extractrion. The lower Miocene reservoir has been faced some issues such as high heterogeneity, complex structure, catastrophic clay swelling, low connectivity among the fractures, low effective wellbore radius and the reservoir that is hig h temperature up to 120°C, the closure pressure up to 6680psi, reservoir pressure up to 4500 psi, reservoir depth up to 3000m. Another reason low conductivity consists of both low reservoir porosity ranging from 1% of the hard shale to 10% of the sandstone formation, and the low permeability raining from 1md to 10md. By considering the various recovery methods, the integrated hydraulic fracturing stimulation is the best tool to successfully stimulate this reservoir, which method allows an increase in oil production rate. In the post fractured well has been shown an increase in productivity over 3 folds in comparison with the base case with fracture half-length nearly 75m, and fracture conductivity about 5400md.ft, which production rate is higher than the production rate of the base case. In addition, the proppant mass is used of 133,067 lbs of which the first main stage is to pump sinter lite bauxite proppant type of 20/40 into the fractures and the next big stage is to pump sintered ball bauxite proppant size of 16/30 into the fractures, which not only isolate proppant flow back but also increase fracture conductivity at the near wellbore as wel as high productivity rate after fractured well. To improve proppant transport, fract uring fluid systems consist of Guar polymer concentration of 11.2 pptg with these additives to form a total leak-off coefficient of 0.00227 ft/min0.5.


2010 ◽  
Author(s):  
Limin Zhao ◽  
Yang Liu ◽  
Dezhi Bian ◽  
Xianghong Wu ◽  
Wei Li ◽  
...  

2014 ◽  
Vol 900 ◽  
pp. 677-680
Author(s):  
Chun Hong Nie

This paper has discussed the characteristics, roles, feasibility and obvious effects of the technology by applying electric field to enhance oil recovery when the oil field is in high water cut stage and super high water cut stage. In view that most oil wells in old oil field have entered into the super high water cut production, the remaining oil in the main reservoir is in fragmented distribution with poor results of water injection and new reserves of oil mostly have a low penetration rate and are thin layers of poor physical properties, the use of the direct current field in period of high water cut is the best policy to achieve high and stable yield and is fairly promising.


Sign in / Sign up

Export Citation Format

Share Document