Optimization Design for Oil-Water Separator of Injection-Production Technology in the same Well

2013 ◽  
Vol 803 ◽  
pp. 383-386
Author(s):  
Shu Ren Yang ◽  
Di Xu ◽  
Chao Yu ◽  
Jia Wei Fan ◽  
Cheng Chu Yue Fu

In order to solve the problem of high water cut wells in some oil field in Daqing that it could not get the large-scale application because of the bad separating effect of down hole centrifugal oil-water separator, we optimize the design of multi-cup uniform flux oil-water separator according to the similar separation principle of multi-cup uniform flux gas anchor, and it is obtained to achieve of injection-production technology in the same well which is of high water cut. The design concept of the separator is increasing the number of opening every layer and aperture gradually in subsection from up to down in the design process. The purpose is to get the close intake quantity of every orifice and guarantee the residence time is long enough in the separator, effectively shorten the length of down hole oil-water separator and reduce the production costs and operating costs.

2021 ◽  
Author(s):  
Valery Sergeevich Sorokin ◽  
Alexey Semenovich Gudoshnikov ◽  
Denis Vyacheslavovich Nyunyaykin ◽  
Andrey Anatolyevich Kochenkov ◽  
Prasad Sethuraman ◽  
...  

Abstract This paper describes a production optimiser Pilot, developed by Rosneft/Samotlorneftegaz, with support from bp and deployed in JSC Samotlorneftegaz - a vast, mature, water-flooded, high water-cut and artificially-lifted oil field. Objectives include creating a digital twin for a sub-system of 600 wells and ~180 km of pipeline network, applying discrete, continuous and constrained optimisation techniques to maximise production, developing sustainable deployment workflows, implementing optimiser recommendations in the field and tracking incremental value realisation. This proof-of-concept Pilot and field trial approach was adopted to understand the optimisation technology capability and work-flow sustainability, prior to a field-wide roll-out. The periodic optimisation activity workflows include the creation of a "Digital Twin", a validated surface infrastructure model that is fully calibrated to mimic field performance, followed by performing optimisation that includes all the relevant constraints. Optimisation was trialled using two different classes of algorithms – based on sequential-modular and equation-oriented techniques. This strategy minimises optimisation failure risks and highlights potential performance issues for such large-scale systems. Optimiser recommendations were consolidated, field-implemented and values tracked. The optimiser Pilot development was undertaken during the fourth quarter of 2019. The delivered minimum viable product and workflows were used for field trials during 2019-20 and continuously improved based on the learnings. Specialists from both bp and Rosneft, along with three consulting organisations (1 in Russia and 2 in the UK) collaborated and worked as one-team to deliver the Pilot. Optimiser recommendations for maximising production include continuous and discrete decisions such as ESP frequency changes, high water-cut well shut-ins and prioritised ESP lists for installing variable speed drives. Field production increase of 1% was achieved in 2020 and tracked. Enduring capabilities were built, and sustainable work-flows developed. Field-wide optimisation for Samotlorneftegaz is non-trivial due to the sheer size, with over 9,000 active wells and due to continuously transient operations arising from frequent well-work, well shut-in's, new well delivery, pipeline modifications and cyclic mode of operations in some wells. This Pilot has provided assurance for the optimisation technical feasibility and workflow sustainability. A second Pilot of similar complexity but with different pressure-flow system response is planned. The combined results will help to decide about the full-field roll-out for this vast field, which is anticipated to deliver around 1% of additional production. This Pilot has demonstrated the applicability of discrete and continuous variable constrained optimisation techniques to large-scale production networks, with very high well-count. Furthermore, the developed workflows for configuring and calibrating the digital twin have several unique components including automation of hydraulic network model generation from static data, well model build automation and fit-for-purpose automated well model calibration. Overall, the results of this approach demonstrate a viable and sustainable methodology to optimise large-scale oil production systems.


2021 ◽  
Author(s):  
Chuan Yu ◽  
Qinghai Yang ◽  
Songbo Wei ◽  
Ming Li ◽  
Tao Fu

Abstract Single-layer water cut measurement is of great significance for identifying and shutting off the unwanted water, analyzing oil remained and optimizing production. Currently, however, only the water cut of multilayer mixture can be measured by testing samples taken from wellhead, a way which is widely used in oilfields. That of single-layer fluid cannot be determined yet To address the problem, this paper puts forward a new impedance sensor that offers long-term online monitoring of single-layer water cut. This sensor is based on the different electrical conductivity of oil and water. It has two layers. The inner one contains three electrodes - two at both sides sending sinusoidal excitation signals and one at the middle receiving signals that have been attenuated by the water-oil medium. With the Maxwell's model of oil-water mixed fluid, the receiver then can measure the water cut online. The outer layer of the sensor is made of PEEK, an insulative protection. In front of the electrodes lies a static mixer which makes the measurement more accurate by fully blending the two media when they flow through the electrodes. Laboratory tests are carried out with the prototype of the sensor at various oil-water mixing ratios, fluid flow rates, and temperatures. Results show that the average margin of error is within ± 3%. Higher accuracy is seen when high water cut and flow rate enable oil globules to disperse more evenly and the space in between to get wider and the RMS error is less than 2%. If the water cut drops below 80%, the aggregation of the droplets will cause wild fluctuation and more errors in the measurement. In addition, the mineralization of the mixture directly changes its conductivity, which largely impacts the result. Meanwhile, temperature can influence the ionic movement intensity and then alter the conductivity of the medium. Therefore, in practice, the sensor calibration needs to be performed according to the range of medium salinity, and the temperature of the medium is collected in real time for temperature compensation. It is shown that after the adjustment, the water cut measurement results have higher accuracy and consistency. The impedance sensor can realize online water cut monitoring for a single-layer, indicated by tests. It is more suitable for the increasing high water cut oilfields in that it is more accurate as the water cut grows.


2021 ◽  
Author(s):  
Nasser Faisal Al-Khalifa ◽  
Mohammed Farouk Hassan ◽  
Deepak Joshi ◽  
Asheshwar Tiwary ◽  
Ihsan Taufik Pasaribu ◽  
...  

Abstract The Umm Gudair (UG) Field is a carbonate reservoir of West Kuwait with more than 57 years of production history. The average water cut of the field reached closed to 60 percent due to a long history of production and regulating drawdown in a different part of the field, consequentially undulating the current oil/water contact (COWC). As a result, there is high uncertainty of the current oil/water contact (COWC) that impacts the drilling strategy in the field. The typical approach used to develop the field in the lower part of carbonate is to drill deviated wells to original oil/water contact (OOWC) to know the saturation profile and later cement back up to above the high-water saturation zone and then perforate with standoff. This method has not shown encouraging results, and a high water cut presence remains. An innovative solution is required with a technology that can give a proactive approach while drilling to indicate approaching current oil/water contact and geo-stop drilling to give optimal standoff between the bit and the detected water contact (COWC). Recent development of electromagnetic (EM) look-ahead resistivity technology was considered and first implemented in the Umm Gudair (UG) Field. It is an electromagnetic-based signal that can detect the resistivity features ahead of the bit while drilling and enables proactive decisions to reduce drilling and geological or reservoir risks related to the well placement challenges.


2016 ◽  
Vol 13 (1) ◽  
pp. 179-193 ◽  
Author(s):  
An Zhao ◽  
Yun-Feng Han ◽  
Ying-Yu Ren ◽  
Lu-Sheng Zhai ◽  
Ning-De in

2020 ◽  
Vol 12 (1) ◽  
pp. 1736-1749
Author(s):  
Jincai Wang ◽  
Zifei Fan ◽  
Lun Zhao ◽  
Li Chen ◽  
Jun Ni ◽  
...  

Abstract After a sandstone oilfield enters the high water-cut period, the viscosity of crude oil has an important influence on remaining oil distribution and waterflooding characteristics under the same factors of, e.g., reservoir quality and development methods. Based on a comprehensive interpretation of the waterflooded layers in new oil wells, physical simulation experiments, and reservoir numerical simulations, we analyzed the waterflooding laws of a high water-cut sandstone reservoir with different oil viscosities in Kazakhstan under the same oil production speed, and we clarified the remaining oil potential of reservoirs with different viscosities and proposed corresponding development measures. The results show that low-viscosity oil reservoirs (1 mPa s) have uniform waterflooding, thick streamlines, small waterflooding areas, and low overall waterflooding degrees because of their homogeneous oil–water viscosities. However, within waterflooded areas, the reservoirs have high oil displacement efficiencies and high waterflooding degrees, and the remaining oil is mainly concentrated in the unwaterflooded areas; therefore, the initial production and water cut in new oil wells vary significantly. High-viscosity oil reservoirs (200 mPa s) have severe waterflooding fingering, large waterflooding areas, and high overall waterflooded degrees because of their high oil–water mobility ratios. However, within waterflooded areas, the reservoirs have low oil displacement efficiencies and low waterflooding degrees, and the remaining oil is mainly concentrated in both the waterflooded areas and the unwaterflooded areas; therefore, the differences in the initial production and water cut of new oil wells are small. Moderate-viscosity oil reservoirs (20 mPa s) are characterized by remaining oil distributions that are somewhere in between those of the former two reservoirs. Therefore, in the high water-cut period, as the viscosity of crude oil increases, the efficiency of waterflooding gradually deteriorates and the remaining oil potential increases. In the later development, it is suggested to implement the local well pattern thickening in the remaining oil enrichment area for reservoirs with low viscosity, whereas a gradual overall well pattern thickening strategy is recommended for whole reservoirs with moderate and high viscosity. The findings of this study can aid better understanding of waterflooding law and the remaining oil potential of reservoirs with different viscosities and proposed corresponding development measures. The research results have important guidance and reference significance for the secondary development of high water-cut sandstone oilfields.


Sensors ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1703 ◽  
Author(s):  
Yanjun Wang ◽  
Haoyu Li ◽  
Xingbin Liu ◽  
Yuhui Zhang ◽  
Ronghua Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document