Scrutinize Logging While Drilling Data in Horizontal Wells: Reservoir Architecture & Fluid Fill Alternative Concepts Aids in Realizing the Potential of Flank Infill Opportunity in the Sultanate of Oman

Author(s):  
Shahab Hadidi ◽  
Maria Boya Ferrero ◽  
Hilal Yaarubi
2009 ◽  
Vol 36 (5) ◽  
pp. 617-622 ◽  
Author(s):  
Li Fangming ◽  
Tian Zhongyuan ◽  
Jiang Aming ◽  
Wang Xiaoxia

Author(s):  
Matthew Blyth ◽  
◽  
Naoki Sakiyama ◽  
Hiroshi Hori ◽  
Hiroaki Yamamoto ◽  
...  

A new logging-while-drilling (LWD) acoustic tool has been developed with novel ultrasonic pitch-catch and pulse-echo technologies. The tool enables both high-resolution slowness and reflectivity images, which cannot be addressed with conventional acoustic logging. Measuring formation elastic-wave properties in complex, finely layered formations is routinely attempted with sonic tools that measure slowness over a receiver array with a length of 2 ft or more depending upon the tool design. These apertures lead to processing results with similar vertical resolutions, obscuring the true slowness of any layering occurring at a finer scale. If any of these layers present significantly different elastic-wave properties than the surrounding rock, then they can play a major role in both wellbore stability and hydraulic fracturing but can be absent from geomechanical models built on routine sonic measurements. Conventional sonic tools operate in the 0.1- to 20-kHz frequency range and can deliver slowness information with approximately 1 ft or more depth of investigation. This is sufficient to investigate the far-field slowness values but makes it very challenging to evaluate the near-wellbore region where tectonic stress redistribution causes pronounced azimuthal slowness variation. This stress-induced slowness variation is important because it is also a key driver of wellbore geomechanics. Moreover, in the presence of highly laminated formations, there can be a significant azimuthal variation of slowness due to layering that is often beyond the resolution of conventional sonic tools due to their operating frequency. Finally, in horizontal wells, multiple layer slownesses are being measured simultaneously because of the depth of investigation of conventional sonic tools. This can cause significant interpretational challenges. To address these challenges, an entirely new design approach was needed. The novel pitch-catch technology operates over a wide frequency range centered at 250 kHz and contains an array of receivers having a 2-in. receiver aperture. The use of dual ultrasonic technology allows the measurement of high-resolution slowness data azimuthally as well as reflectivity and caliper images. The new LWD tool was run in both vertical and horizontal wells and directly compared with both wireline sonic and imaging tools. The inch-scale slownesses obtained show characteristic features that clearly correlate to the formation lithology and structure indicated by the images. These features are completely absent from the conventional sonic data due to its comparatively lower vertical resolution. Slowness images from the tool reflect the formation elastic-wave properties at a fine scale and show dips and lithological variations that are complementary to the data from the pulse-echo images. The physics of the measurement are discussed, along with its ability to measure near-wellbore slowness, elastic-wave properties, and stress variations. Additionally, the effect of the stress-induced, near-wellbore features seen in the slowness images and the pulse-echo images is discussed with the wireline dipole shear anisotropy processing.


2022 ◽  
Author(s):  
Ahmed Elsayed Hegazy ◽  
Mohammed Rashdi

Abstract Pressure transient analysis (PTA) has been used as one of the important reservoir surveillance tools for tight condensate-rich gas fields in Sultanate of Oman. The main objectives of PTA in those fields were to define the dynamic permeability of such tight formations, to define actual total Skin factors for such heavily fractured wells, and to assess impairment due to condensate banking around wellbores. After long production, more objectives became also necessary like assessing impairment due to poor clean-up of fractures placed in depleted layers, assessing newly proposed Massive fracturing strategy, assessing well-design and fracture strategies of newly drilled Horizontal wells, targeting the un-depleted tight layers, and impairment due to halite scaling. Therefore, the main objective of this paper is to address all the above complications to improve well and reservoir modeling for better development planning. In order to realize most of the above objectives, about 21 PTA acquisitions have been done in one of the mature gas fields in Oman, developed by more than 200 fractured wells, and on production for 25 years. In this study, an extensive PTA revision was done to address main issues of this field. Most of the actual fracture dynamic parameters (i.e. frac half-length, frac width, frac conductivity, etc.) have been estimated and compared with designed parameters. In addition, overall wells fracturing responses have been defined, categorized into strong and weak frac performances, proposing suitable interpretation and modeling workflow for each case. In this study, more reasonable permeability values have been estimated for individual layers, improving the dynamic modeling significantly. In addition, it is found that late hook-up of fractured wells leads to very poor fractures clean out in pressure-depleted layers, causing the weak frac performance. In addition, the actual frac parameters (i.e. frac-half-length) found to be much lower than designed/expected before implementation. This helped to improve well and fracturing design and implementation for next vertical and horizontal wells, improving their performances. All the observed PTA responses (fracturing, condensate-banking, Halite-scaling, wells interference) have been matched and proved using sophisticated single and sector numerical simulation models, which have been incorporated into full-field models, causing significant improvements in field production forecasts and field development planning (FDP).


2021 ◽  
Author(s):  
Andrew Boucher ◽  
Josef Shaoul ◽  
Inna Tkachuk ◽  
Mohammed Rashdi ◽  
Khalfan Bahri ◽  
...  

Abstract A gas condensate field in the Sultanate of Oman has been developed since 1999 with vertical wells, with multiple fractures targeting different geological units. There were always issues with premature screenouts, especially when 16/30 or 12/20 proppant were used. The problems placing proppant were mainly in the upper two units, which have the lowest permeability and the most heterogeneous lithology, with alternating sand and shaly layers between the thick competent heterolith layers. Since 2015, a horizontal well pilot has been under way to determine if horizontal wells could be used for infill drilling, focusing on the least depleted units at the top of the reservoir. The horizontal wells have been plagued with problems of high fracturing pressures, low injectivity and premature screenouts. This paper describes a comprehensive analysis performed to understand the reasons for these difficulties and to determine how to improve the perforation interval selection criteria and treatment approach to minimize these problems in future horizontal wells. The method for improving the success rate of propped fracturing was based on analyzing all treatments performed in the first seven horizontal wells, and categorizing their proppant placement behavior into one of three categories (easy, difficult, impossible) based on injectivity, net pressure trend, proppant pumped and screenout occurrence. The stages in all three categories were then compared with relevant parameters, until a relationship was found that could explain both the successful and unsuccessful treatments. Treatments from offset vertical wells performed in the same geological units were re-analyzed, and used to better understand the behavior seen in the horizontal wells. The first observation was that proppant placement challenges and associated fracturing behavior were also seen in vertical wells in the two uppermost units, although to a much lesser extent. A strong correlation was found in the horizontal well fractures between the problems and the location of the perforated interval vertically within this heterogeneous reservoir. In order to place proppant successfully, it was necessary to initiate the fracture in a clean sand layer with sufficient vertical distance (TVT) to the heterolith (barrier) layers above and below the initiation point. The thickness of the heterolith layers was also important. Without sufficient "room" to grow vertically from where it initiates, the fracture appears to generate complex geometry, including horizontal fracture components that result in high fracturing pressures, large tortuosity friction, limited height growth and even poroelastic stress increase. This study has resulted in a better understanding of mechanisms that can make hydraulic fracturing more difficult in a horizontal well than a vertical well in a laminated heterogeneous low permeability reservoir. The guidelines given on how to select perforated intervals based on vertical position in the reservoir, rather than their position along the horizontal well, is a different approach than what is commonly used for horizontal well perforation interval selection.


2020 ◽  
Vol 17 (3) ◽  
pp. 645-657
Author(s):  
Zhen-Guan Wu ◽  
Shao-Gui Deng ◽  
Xu-Quan He ◽  
Runren Zhang ◽  
Yi-Ren Fan ◽  
...  

2010 ◽  
Vol 5 (3) ◽  
Author(s):  
Yu Zhang ◽  
Sheng-hui Wang ◽  
Ke Xiong ◽  
Zheng-ding Qiu ◽  
Dong-mei Sun

Sign in / Sign up

Export Citation Format

Share Document