initiation point
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 52)

H-INDEX

19
(FIVE YEARS 2)

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Filippos Vallianatos ◽  
Georgios Michas ◽  
George Hloupis ◽  
Georgios Chatzopoulos

On 27 September 2021, a shallow earthquake with focal depth of 10 km and moment magnitude Mw6.0 occurred onshore in central Crete (Greece). The evolution of possible preseismic patterns in the area of central Crete before the Mw6.0 event was investigated by applying the method of multiresolution wavelet analysis (MRWA), along with that of natural time (NT). The monitoring of preseismic patterns by critical parameters defined by NT analysis, integrated with the results of MRWA as the initiation point for the NT analysis, forms a promising framework that may lead to new universal principles that describe the evolution patterns before strong earthquakes. Initially, we apply MRWA to the interevent time series of the successive regional earthquakes in order to investigate the approach of the regional seismicity towards critical stages and to define the starting point of the natural time domain. Then, using the results of MRWA, we apply the NT analysis, showing that the regional seismicity approached criticality for a prolonged period of ~40 days before the occurrence of the Mw6.0 earthquake, when the κ1 natural time parameter reached the critical value of κ1 = 0.070, as suggested by the NT method.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 315
Author(s):  
Kazuya Saigusa ◽  
Joji Yamamoto ◽  
Koji Takahashi ◽  
Fumiaki Kumeno ◽  
Norihito Shibuya

This study aimed to improve the bending strength and reliability of ceramics using laser peening (LP). In the experiment, LP without coating (LPwC) and with coating (LPC) were applied to silicon nitride (Si3N4) under various conditions. The surface roughness, residual stress, and bending strength were then measured for the non-LP, LPwC, and LPC specimens. The results show that the LPwC specimen had a greater surface roughness but introduced larger and deeper compressive residual stress when compared with the non-LP and LPC specimens. In addition, the bending strength of the LPwC specimen was higher and scatter in bending strength was less compared with the non-LP and LPC specimens. This may be attributed to the transition of the fracture initiation point from the surface to the interior of the LPwC specimen because of the compressive residual stress introduced near the surface. Thus, it was demonstrated that the application of LP is effective in improving the strength and reliability of ceramics.


Author(s):  
Waldemar Trzciński ◽  
Józef Paszula ◽  
Leszek Szymańczyk

The aim of the study was to determine the parameters of a detonator generating a self-centring detonation wave, based on experimental and theoretical analysis. The methods for manufacturing selfcentring detonation wave generators available in literature were reviewed and a detonator comprised of two explosives was proposed. The detonator geometry was analysed for its ability to centre the detonation wave. A physical detonator model was created and the detonation wave front downstream of the detonator, analysed and the detonator’s capability to compensate an off-centre detonation initiation, evaluated. The wave fronts were recorded using pulsed x-ray radiography. The study showed that the proposed detonator provides a symmetrical initiation of the main charge for the initiation point (location) offset, lower than the assumed maximum offset.


Author(s):  
Rachel Gaal ◽  
James L. Kinter

AbstractMesoscale convective systems (MCS) are known to develop under ideal conditions of temperature and humidity profiles and large-scale dynamic forcing. Recent work, however, has shown that summer MCS events can occur under weak synoptic forcing or even unfavorable large-scale environments. When baroclinic forcing is weak, convection may be triggered by anomalous conditions at the land surface. This work evaluates land surface conditions for summer MCS events forming in the U.S. Great Plains using an MCS database covering the contiguous United States east of the Rocky Mountains, in boreal summers 2004-2016. After isolating MCS cases where synoptic-scale influences are not the main driver of development (i.e. only non-squall line storms), antecedent soil moisture conditions are evaluated over two domain sizes (1.25° and 5° squares) centered on the mean position of the storm initiation. A negative correlation between soil moisture and MCS initiation is identified for the smaller domain, indicating that MCS events tend to be initiated over patches of anomalously dry soils of ~100-km scale, but not significantly so. For the larger domain, soil moisture heterogeneity, with anomalously dry soils (anomalously wet soils) located northeast (southwest) of the initiation point, is associated with MCS initiation. This finding is similar to previous results in the Sahel and Europe that suggest that induced meso-β circulations from surface heterogeneity can drive convection initiation.


2021 ◽  
Vol 22 (6) ◽  
pp. 1270-1275
Author(s):  
Tinh Le ◽  
Parker Cordial ◽  
Mackenzie Sankoe ◽  
Charlotte Purnode ◽  
Ankur Parekh ◽  
...  

Introduction: Recent studies from urban academic centers have shown the promise of emergency physician-initiated buprenorphine for improving outcomes in opioid use disorder (OUD) patients. We investigated whether emergency physician-initiated buprenorphine in a rural, community setting decreases subsequent healthcare utilization for OUD patients. Methods: We performed a retrospective chart review of patients presenting to a community hospital emergency department (ED) who received a prescription for buprenorphine from June 15, 2018–June 15, 2019. Demographic and opioid-related International Classification of Diseases, 10th Revision, (ICD-10) codes were documented and used to create a case-matched control cohort of demographically matched patients who presented in a similar time frame with similar ICD-10 codes but did not receive buprenorphine. We recorded 12-month rates of ED visits, all-cause hospitalizations, and opioid overdoses. Differences in event occurrences between groups were assessed with Poisson regression. Results: Overall 117 patients were included in the study: 59 who received buprenorphine vs 58 controls. The groups were well matched, both roughly 90% White and 60% male, with an average age of 33.4 years for both groups. Controls had a median two ED visits (range 0-33), median 0.5 hospitalizations (range 0-8), and 0 overdoses (range 0-3), vs median one ED visit (range 0-8), median 0 hospitalizations (range 0-4), and median 0 overdoses (range 0-3) in the treatment group. The incidence rate ratio (IRR) for counts of ED visits was 0.61, 95% confidence interval (CI), 0.49, 0.75, favoring medication-assisted treatment (MAT). For hospitalizations, IRR was 0.34, 95% CI, 0.22, 0.52 favoring MAT, and for overdoses was 1.04, 95% CI, 0.53, 2.07. Conclusion: Initiation of buprenorphine by ED providers was associated with lower 12-month ED visit and all-cause hospitalization rates with comparable overdose rates compared to controls. These findings show the ED’s potential as an initiation point for medication-assisted treatment in OUD patients.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jiaqi Guo ◽  
Pengfei Liu ◽  
Junqi Fan ◽  
Hengyuan Zhang

To study the rock mechanical behaviors and damage process mechanism of granite samples under triaxial stress, conventional triaxial compression tests were carried out on an RMT-150B rock mechanics testing machine and acoustic emission detector. The test results show that the strength of the granite sample has a good linear relationship with the confining pressure, the cohesion force c of the granite samples is 29.37 MPa, and the internal friction angle is 54.23° by calculation based on the Mohr-Coulomb strength criterion. The larger the initial confining pressure of the rock sample is, the larger the crack initiation stress ( σ ci ) and dilatancy stress ( σ cd ) of the granite specimen are, the larger the energy values at the crack initiation point and dilatancy point are, and the larger the peak energy storage and energy release rate at the failure are. In the case of a small initial confining pressure, the AE ringdowning counts and the cumulative AE ringing counts increase to their maximum instantaneously at the peak stress point, and the damage of the sample develops rapidly. While the initial confining pressure is high, the AE ringing counts and the cumulative AE ringing counts of the granite specimens increase evenly, and the deformation damage of the granite specimens is slow. Before the crack initiation point, AE signals are mainly low-energy and low-frequency friction-type AE events, while after the dilatation point, AE signals of samples are mainly high-frequency and high-energy fracture-type AE events. The failure mode of granite samples judged by acoustic emission parameters according to the distribution of characteristic values of AE parameters RA and AF is consistent with the reality. The AE b value of the granite sample is large when the confining pressure is low, and there will be a sudden drop, the decrease time is late, and the decrease rate is large. Under the same stress level, the larger the confining pressure is, the larger the damage variable D is.


2021 ◽  
Author(s):  
Andrew Boucher ◽  
Josef Shaoul ◽  
Inna Tkachuk ◽  
Mohammed Rashdi ◽  
Khalfan Bahri ◽  
...  

Abstract A gas condensate field in the Sultanate of Oman has been developed since 1999 with vertical wells, with multiple fractures targeting different geological units. There were always issues with premature screenouts, especially when 16/30 or 12/20 proppant were used. The problems placing proppant were mainly in the upper two units, which have the lowest permeability and the most heterogeneous lithology, with alternating sand and shaly layers between the thick competent heterolith layers. Since 2015, a horizontal well pilot has been under way to determine if horizontal wells could be used for infill drilling, focusing on the least depleted units at the top of the reservoir. The horizontal wells have been plagued with problems of high fracturing pressures, low injectivity and premature screenouts. This paper describes a comprehensive analysis performed to understand the reasons for these difficulties and to determine how to improve the perforation interval selection criteria and treatment approach to minimize these problems in future horizontal wells. The method for improving the success rate of propped fracturing was based on analyzing all treatments performed in the first seven horizontal wells, and categorizing their proppant placement behavior into one of three categories (easy, difficult, impossible) based on injectivity, net pressure trend, proppant pumped and screenout occurrence. The stages in all three categories were then compared with relevant parameters, until a relationship was found that could explain both the successful and unsuccessful treatments. Treatments from offset vertical wells performed in the same geological units were re-analyzed, and used to better understand the behavior seen in the horizontal wells. The first observation was that proppant placement challenges and associated fracturing behavior were also seen in vertical wells in the two uppermost units, although to a much lesser extent. A strong correlation was found in the horizontal well fractures between the problems and the location of the perforated interval vertically within this heterogeneous reservoir. In order to place proppant successfully, it was necessary to initiate the fracture in a clean sand layer with sufficient vertical distance (TVT) to the heterolith (barrier) layers above and below the initiation point. The thickness of the heterolith layers was also important. Without sufficient "room" to grow vertically from where it initiates, the fracture appears to generate complex geometry, including horizontal fracture components that result in high fracturing pressures, large tortuosity friction, limited height growth and even poroelastic stress increase. This study has resulted in a better understanding of mechanisms that can make hydraulic fracturing more difficult in a horizontal well than a vertical well in a laminated heterogeneous low permeability reservoir. The guidelines given on how to select perforated intervals based on vertical position in the reservoir, rather than their position along the horizontal well, is a different approach than what is commonly used for horizontal well perforation interval selection.


2021 ◽  
Author(s):  
Abhinandan Kohli ◽  
Oscar Kelder ◽  
Ralph Castelijns ◽  
Rob van Eijs ◽  
Maxim Volkov

Abstract For maintenance of the reservoir pressures and enhanced oil recovery in oil producing formations, waterflooding is often implemented by the Operators. This is achieved by drilling injection wells or converting the oil producing wells into injectors. The injection wells are located at carefully selected points in the oilfield so that the water displaces as much oil as possible to the production wells before the water starts to break through. A significant saving in an oilfield development can be obtained by reducing the actual number of injecting wells and increasing each of the injector wells’ capacity for injection. Balancing the injection and produced volumes often involves injecting at high pressures leading to the fracture of the reservoir rocks along a plane intersecting the wellbore. This happens when injection pressure exceeds the minimal principal stress and the tensile strength of the rock, thereby creating a hydraulic fracture. With continuous injection, these fractures start propagating into the reservoir and may reach the reservoir caprock, which may decrease the integrity and possibly lead to out of zone injection. The study of evaluation of downhole fracture monitoring is divided into two parts. In the first part of the paper (Kohli, et al., 2021), a downhole verification approach to identify the fracture initiation point(s) is the focus. It describes the planning, execution and interpretation of the downhole data. This includes spectral acoustic monitoring and modelling of the temperature responses to quantify the injectivity profile. In this second part of the paper, the direct business impact is discussed by further integration of acoustic monitoring and temperature modeling data with detailed results from of fracture dimension (height) measurement by means of pressure fall off tests. Combined, both studies form an integrated approach that the operator took to prove that the fracture network propagation remains within the reservoir and that the top seal integrity is maintained.


Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 379
Author(s):  
Filippos Vallianatos ◽  
Georgios Michas ◽  
George Hloupis

On 3 March 2021, a strong, shallow earthquake of moment magnitude, Mw6.3, occurred in northern Thessaly (Central Greece). To investigate possible complex correlations in the evolution of seismicity in the broader area of Central Greece before the Mw6.3 event, we apply the methods of multiresolution wavelet analysis (MRWA) and natural time (NT) analysis. The description of seismicity evolution by critical parameters defined by NT analysis, integrated with the results of MRWA as the initiation point for the NT analysis, forms a new framework that may possibly lead to new universal principles that describe the generation processes of strong earthquakes. In the present work, we investigate this new framework in the seismicity prior to the Mw6.3 Thessaly earthquake. Initially, we apply MRWA to the interevent time series of the successive regional earthquakes in order to investigate the approach of the regional seismicity at critical stages and to define the starting point of the natural time domain. Then, we apply the NT analysis, showing that the regional seismicity approached criticality a few days before the occurrence of the Mw6.3 earthquake, when the κ1 natural time parameter reached the critical value of κ1 = 0.070.


2021 ◽  
Author(s):  
Abhinandan Kohli ◽  
Oscar Kelder ◽  
Maxim Volkov ◽  
Rita-Michel Greiss ◽  
Natalia Kudriavaya ◽  
...  

Abstract When an oilfield is exploited by simply producing oil and gas from a number of wells, the reservoir pressure in many circumstances drops quicker than normal impacting the production rates (Koning, 1988) and well performance. To maintain the pressures in the oil producing formations, waterflooding enhancement method is implemented by the Operators. This is achieved by drilling injection wells or converting the oil producing wells into injectors. The injection wells are located at carefully selected points in the oilfield so that the water displaces as much oil as possible to the production wells before the water starts to break through. A significant saving in an oilfield development can be obtained by reducing the actual number of injecting wells and increasing each of the injector wells' capacity for injection. Balancing the injection and produced volumes often involves injecting at high pressures leading to the fracture of the reservoir rocks along a plane intersecting the wellbore. This happens when injection pressure overcomes the rock stress and its tensile strength, thereby creating an induced fracture network. With continuous injection, these fractures start propagating into the reservoir and may reach the reservoir caprock. Continuing to inject further in such a fracture system may breach the top seal integrity of the caprock leading to uncontrolled out of zone injection. The study of evaluation of downhole fracture monitoring is divided into two parts. In this paper a downhole verification approach to identify the fracture initiation point(s) is the focus. It describes the planning, execution and interpretation of the downhole data. This includes spectral acoustic monitoring and modelling of the temperature responses to quantify the injectivity profile. In paper (Kohli, Kelder, Volkov, Castelijns, & van Eijs, 2021), the direct business impact and regulatory requirements are discussed by further integration of acoustic monitoring and temperature modeling data with detailed results from downhole measurements of fracture dimensions by means of pressure fall off tests. Combined, both studies form the integrated approach that the Operator took to meet the regulatory requirements proving that the fracture network propagation remains within the reservoir and that the top seal integrity is maintained.


Sign in / Sign up

Export Citation Format

Share Document