Flow Profiling Using Fiber Optics in a Horizontal Steam Injector with Liner-Deployed Flow Control Devices

2021 ◽  
Author(s):  
Mohammad Javaheri ◽  
Minh Tran ◽  
Richard Scot Buell ◽  
Timothy Lee Gorham ◽  
Jack Sims ◽  
...  

Abstract Horizontal steam injectors can improve the efficiency of thermal operations relative to vertical injectors. However, effective in-well and reservoir surveillance is needed to understand steam conformance. Uniform steam chest development improves steam-oil-ratio (SOR) in continuous steam injection and accelerates recovery in cyclic steam injection. Conformance of the injected steam can be achieved by flow control devices (FCD) deployed on either tubing or liner. A new liner-deployed FCD was used in a horizontal steam injector in the Kern River field. The liner-deployed FCD is intended to replace the tubing-deployed FCDs while reducing capital costs, surveillance costs, and well intervention costs for conformance control. Fiber optics was used for surveillance, which is the most promising method in horizontal steam injectors considering reliability, accuracy, and cost. Fiber optic data enables monitoring the performance of liner-deployed FCDs as well as estimating the flow profile along the lateral length. Multi-mode Distributed Temperature Sensing (DTS) optical fibers and single-mode Distributed Acoustic Sensing (DAS) optical fibers were installed in the well for these objectives. Algorithms for interpreting DTS were improved to include a new technique, Shape Language Modeling (SLM), and a probabilistic approach. The configuration of the FCDs was changed during a well intervention, and it was monitored by DTS and DAS. Data from both DTS and DAS confirms the open/closed position of the sliding sleeve of FCDs initially and after the intervention. The probabilistic estimates of steam outflow in several FCD configurations match well with the theoretical outflow that is expected from the critical flow of steam through chokes installed in the FCDs.

2021 ◽  
Author(s):  
Michael Hardcastle ◽  
Ryan Holmes ◽  
Frank Abbott ◽  
Jesse Stevenson ◽  
Aubrey Tuttle

Abstract Connacher Oil and Gas has deployed Flow Control Devices (FCDs)on an infill well liner as part of a Steam Assisted Gravity Drainage (SAGD) exploitation strategy. Infill wells are horizontal wells drilled in between offsetting SAGD well pairs in order to access bypassed pay and accelerate recovery. These wells can have huge variability in productivity, based on several factors: variable initial temperature due to variable steam chamber development and initial mobility variable injectivity from day one limiting steam circulation and stimulation significant hot spots during production that limit drawdown of the well and oil productivity FCDs have shown great value in several SAGD schemes and are becoming common throughout SAGD applications to manage similar challenges in SAGD pairs, but their application in infill wells is less prevalent and presents a novel challenge to design and evaluate performance. This case study will examine the theory, operation, and early field results of this field trial. Density-based FCDs designed for thermal operations were selected to minimize the impact of viscous fluids commonly encountered early in cold infill well production. The design also limited steam outflow during the stimulation phase, where steam is injected in order to initiate production of the well. Distributed Temperature Sensing (DTS) data, pressures and rates are utilized to analyze the impact of the FCDs towards conformance of the well in the early life. The value of FCDs has led to further piloting of this technology in a second group of nine infill wells, where further value is to be extracted using slimmer wellbores.


SPE Journal ◽  
2020 ◽  
Author(s):  
Mohammad Javaheri ◽  
Minh Tran ◽  
Richard Scot Buell ◽  
Timothy Gorham ◽  
Juan David Munoz ◽  
...  

SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 431-451 ◽  
Author(s):  
M.. Shirdel ◽  
R. S. Buell ◽  
M. J. Wells ◽  
C.. Muharam ◽  
J. C. Sims

Summary Steam-conformance control in horizontal injectors is important for efficient reservoir-heat management in heavy-oil fields. Suboptimal conformance and nonuniform heating of the reservoir can substantially affect the economics of the field development and oil-production response and result in nonuniform steam breakthrough. To achieve the required control, it is essential to have an appropriate well-completion architecture and robust surveillance. Five fiber-optic systems, each with a unique steam-conformance-control-completion configuration, have been installed in two horizontal steam injectors to help mature steam-injection-flow profiling and conformance-control solutions. These fiber-optic systems have used custom-designed fiber-optic bundles of multimode and single-mode fibers for distributed-temperature sensing (DTS) and distributed-acoustic sensing (DAS), respectively. Fiber-optic systems were also installed in a steam-injection-test-flow loop. All the optical fibers successfully acquired data in the wells and flow loop, measuring temperature and acoustic energy. A portfolio of algorithms and signal-processing techniques was developed to interpret the DTS and DAS data for quantitative steam-injection-flow profiling. The heavily instrumented flow-loop environment was used to characterize DTS and DAS response in a design-of-experiment (DOE) matrix to improve the flow-profiling algorithms. These algorithms are dependent on independent physical principles derived from multiphase flow, thermal hydraulic models, acoustic effects, large-data-array processing, and combinations of these methods for both transient and steady-state steam flow. A high-confidence flow profile is computed using the convergence of the algorithms. The flow-profiling-algorithm results were further validated using 11 short-offset injector observation wells wells in the reservoir that confirmed steam movement near the injectors.


2021 ◽  
Author(s):  
Da Zhu ◽  
Alberto Uzcategui

Abstract Flow Control Device (FCD) completions in steam assisted thermal applications have been implemented in several places: Canada, California, China, Oman and Colombia, among others. Such completion configurations have been more common in recent years to mitigate or avoid uneven and/or improper steam placement and steam breakthrough, which are some of the critical issues operators have experienced in these developments. This study presents different FCD technologies designed to optimize the steam injection and fluids production for diverse steam assisted applications including SAGD, CSS and Steam Flooding. Three FCD technologies are introduced: (i) supersonic steam injection FCD, (ii) steam choking FCD and (iii) multi-directional FCD. Extensive Computational Fluid Dynamic (CFD) simulations, analytic near-wellbore simulations and flow loop testing were conducted to evaluate the performance of the three technologies: (i) the supersonic steam injection FCD showed a high pressure recovery (therefore, less upstream pressure requirements) and a reduction of the cumulative steam-oil ratio, (ii) the steam choking FCD demonstrated the highest steam choking capability for these type of devices and (iii) the multi-directional FCD showed promising results for CSS applications to allow for supersonic steam injection during the injection phase and steam choking capabilities during the production phase Common FCD deployment risks such as erosion, scaling potential and high pressure drops were reviewed to provide the reader with a high level understanding of the factors which could induce these issues. Finally, field data where FCD completions have been installed is presented to compare the FCD wells performance versus conventional well designs and illustrate the success of these completions strategies. Keywords: flow control devices, supersonic steam injection, steam choking


2020 ◽  
Vol 22 (3) ◽  
pp. 619-627
Author(s):  
Luca Fenini ◽  
Stefano Malavasi

Abstract Fluid-dynamic noise emissions produced by flow-control devices inside ducts are a concerning issue for valve manufacturers and pipeline management. This work proposes a modified formulation of Acoustic Perturbation Equations (APE) that is applicable to industrial frameworks where the interest is addressed to noise prediction according to international standards. This formulation is derived from a literature APE system removing two terms allowing for a computational time reduction of about 20%. The physical contribution of the removed terms is discussed according to the literature. The modified APE are applied to the prediction of the noise emitted by an orifice. The reliability of the new APE system is evaluated by comparing the Sound Pressure Level (SPL) and the acoustic pressure with the ones returned by LES and literature APE. The new formulation agrees with the other methods far from the orifice: moving over nine diameters downstream of the trailing edge, the SPL is in accordance with the other models. Since international standards characterize control devices with the noise measured 1 m downstream of them, the modified APE formulation provides reliable and faster noise prediction for those devices with outlet diameter, d, such that 9d < 1 m.


Author(s):  
Mohd. S. Aris ◽  
Ieuan Owen ◽  
Chris. J. Sutcliffe

This paper is concerned with convective heat transfer enhancement of heated surfaces through the use of vortex generators and flow control devices. A preliminary proof-of-concept investigation has been carried out into the use of active vortex generators and flow control elements, both manufactured from Shape Memory Alloys (SMAs) which are activated at set temperatures. The vortex generators change their shape to intrude further into the flow at high temperature to enhance heat transfer, while they maintain a low profile at low temperatures to minimise flow pressure losses. One set of vortex generators was made from pre-alloyed powders of SMA material in an advanced rapid prototyping process known as Selective Laser Melting (SLM). Another set of devices was also made from commercially available flat annealed thin SMA sheets for comparison purposes. The flow control elements are devices that preferentially guide the flow to heated parts of a surface, again using temperature-activated SMAs. Promising results were obtained for both the vortex generator and flow control device when their temperatures were varied from 20° to 85°C. The vortex generators responded by increasing their angle of attack from 20° to 35° while the wavy flow control elements straightened out at higher temperatures. As the designs were two-way trained, they regain their initial position and shape at a lower temperature. The surface temperature of the heated plate on which the active devices were positioned reduced between 8 to 51%, indicating heat transfer enhancement due to the generated vortices and changes in air flow rates.


Sign in / Sign up

Export Citation Format

Share Document